

Results and news from the XENON project

14th Workshop on Dark Side of the Universe Annecy-le-Vieux, France

Ranny Budnik

Department of Particle Physics and Astrophysics Weizmann Institute of Science

On behalf of the **XENON** collaboration

The XENON Collaboration

NON ter Project

EN

The XENON Collaboration at LNGS

LNGS

DM evidence on one slide

R. Budnik, DSU 2018

Direct Dark Matter Detection

R. Budnik, DSU 2018

- Prompt scintillation photons give first signal (S1)
- Ionized e- drift up to the anode and amplified, giving $\underline{S2}$
- Time difference gives \mathbf{Z} position
- S2 Hit pattern on top gives XY position
- Ratio S2/S1 indicates type of interaction

The Phased XENON program

Years	2005-2007	2008-2016	2012-2018	2019-2023
Total mass	25 kg	161 kg	3.2 ton	8 ton
Length	15cm drift	30 cm drift	1 m drift	1.5 m drift
Sensitivity reach	$\sim 10^{-43} \text{cm}^2$	$\sim 10^{-45} \text{cm}^2$	~10 ⁻⁴⁷ cm ²	$\sim 10^{-48} cm^2$

Evolution of LXeTPCs as WIMP detectors

XENON1T

The XENON1T Experiment @ LNGS

Cryogenic Plants

Water Cerenkov µ Veto

320

160 ខ្មី

120

- 700 ton pure water instrumented with 84 high-QE 8" PMTs
- Active shield against muons
- Trigger efficiency > 99.5% for muons in water tank
- Cosmogenic neutron background suppressed to <0.01 events/ton/yr

JINST 9, 11007 (2014)

The XENON1T Time Projection Chamber

Understanding the Detector

The XENON1T Light Detection System

- 248 3-inch low-radioactivity Hamamatsu R11410-21 PMTs arranged in two arrays
- 35% QE @ 178 nm
- each PMT digitized at **100MHz**
- operating gain 1-5x10⁶ @ 1.5kV stable within 1-2 %
- SPE acceptance $\sim 94\%$
- High reflectivity PTFE lining of entire inner volume
- Highly-transparent (>90%) grid electrodes

127 PMTs in the top array

121 PMTs in the bottom array

The XENON1T Light Detection System

PMT gain stability

XENON1T: science and calibration data

- 279 days high quality data (livetime-corrected) spanning more than 1 year of stable detector's operation. The LXeTPC has been "cold" since Spring 2016
- 1 tonne X year exposure given 1.3 tonne fiducial volume: the largest reported to date with this type of detector

drift time (depth)

Data Analysis: overview

R. Budnik, DSU 2018

https://github.com/XENON1T/pax

Calibration Sources

Stable background conditions after a couple days (10.6h longest $T_{1/2}$)

9.4 keV and 32.1 keV lines (~150 ns delay) homogeneous in volume

Neutrons: Signal

Type:ExternalFreq:As neededLength:6 weeks (AmBe)2 days (generator)

Light and Charge Signals Stability

Position dependence of light (solid angle) and charge (attenuation length) signals very well understood through measurement with ^{83m}Kr, ²²²Rn α's. Excellent agreement with optical Monte Carlo simulations and with model of purity evolution

Light and charge yield stability monitored with several sources:

- ²²²Rn daughters
- Activated Xe after neutron calibrations
 - ^{83m}Kr calibrations
- Stability is within a few %

Energy Resolution

Matter Project

Position Reconstruction

x-y reconstruction via neural network:

- Input: charge/channel top array
- Training: Monte Carlo simulation

Position resolution using ^{83m}Kr

- Two interactions (9, 31 keV), same x-y
- Position resolution (1-2 cm)
- PMT diameter (7.62 cm)

Position corrections using ^{83m}Kr

- Drift field distortion
- Localized inhomogeneities from inactive PMTs
- Data-derived correction verified by comparison to MC with several event sources

Understanding the Backgrounds

²²²Rn

 α

²¹⁸Po

²¹⁴Pb

²¹⁴Bi

²¹⁴Po

²¹⁰Ph

²¹⁰Bi

²¹⁰Po

206Pb

ß

α

ß

α

α

3.8 d

3.05 min

26.8 min

19.9 min

164 µs

22.3 a

5.0 d

138 d

stable

5.3 MeV

7.7 MeV

5.5 MeV

6.0 MeV

Electronic Recoil Backgrounds

- Rn222 : 10 µBq/kg
 - Achieved with careful surface emanation control and measurements
 Further reduction with online cryogenic distillation
 - Kr85 : sub-ppt Kr/Xe
 - Achieved with online cryogenic distillation
- Materials radioactivity (HPGe γ screening): subdominant

Electronic Recoil Backgrounds

(Expectations in 1-12 keV search window, 1t FV, Source Rate $[t^1 y^1]$ Fraction [%] single scatters, before ER/NR discrimination) ²²²Rn 620 ± 60 85.4 ⁸⁵Kr 31 ± 6 4.3JCAP04 (2016) 027 Solar ν 36 ± 1 4.9 Materials 30 ± 3 4.1¹³⁶Xe 9 ± 1 1.4 720 ± 60 Total

Predicted: (considering 10 uBq/kg of ²¹⁴Pb and 0.66 ppt of Kr):

(75 ± 6) events / (t·year·keV)

Measured: in 1300 kg FV and below 25 keVee (82⁺⁵-3 (syst)± 2 (stat)) events / (t·year·keV) Lowest ER background ever achieved in a DM detector!

Nuclear Recoil Backgrounds

Cosmogenic µ-induced neutrons significantly reduced by rock overburden and muon veto

Coherent elastic *v*-nucleus scattering, constrained by ⁸B neutrino flux and measurements, is an irreducible background at very low energy, ~1 keV

Radiogenic neutrons from (α, n) reactions and fission from ²³⁸U and ²³²Th: reduced via careful materials selection, event multiplicity and fiducialization

(Expectations in 4-50 keV search window, 1t FV, single scatters)

JCAP04	(2016)	027
	` /	

	Source	Rate [t-1 y-1]	Fraction [%]
	Radiogenic n	0.6 ± 0.1	96.5
	CEvNS	0.012	2.0
	Cosmogenic n	< 0.01	< 2.0

Accidental Coincidence Background

Lone-S1

A "lone" S1 or S2 signal produced in light and charge insensitive regions of the TPC produce fake events in signal region

Surface Background

Response to Electronic and Nuclear Recoils

Calibrating ERs and NRs

Calibrating ERs and NRs

Dark Matter Search Data: Blinded and salted

- Blinding: to avoid potential bias in event selection and the signal/background modeling the nuclear recoil ROI (S2 vs S1 only) was blinded from the start of SR1 analysis (and SR0 reanalysis).
- Salting: to protect against post-unblinding tuning of cuts and background models, an undisclosed number and type of event was added to data

R. Budnik, DSU 2018

Fiducial Volume Optimization

Optimize FV prior to unblinding to reduce materials and surface background

- FV volume increased from 1 tonne (in SR0 First Result) to 1.3 tonne thanks to improvements in position reconstruction, including PTFE charge-up and field corrections
- new surface background model allowed inclusion of radius, R, in statistical inference to maximize useful volume. Analysis space became cS1, cS2b, R and Z

Event Selection & Detection Efficiency

- Detection efficiency dominated by 3-fold coincidence requirement
 - Estimated via novel waveform simulation including systematic uncertainties
- Selection efficiencies estimated from control or MC data samples
- Search region defined within 3-70 PE in cS1
- 10 GeV (dashed), 50 GeV (dotted) and 200 GeV (dashed-dotted) WIMP spectra shown

שכא ויצבא לשרע Background prediction and Unblinding

Mass	1.3t	1.3t
(S2, S1)	Full	Reference
ER	627 ± 18	1.62 ± 0.30
Neutron	1.43 ± 0.66	0.77 ± 0.35
CENNS	$0.05 {\pm} 0.01$	0.03 ± 0.01
AC	$0.47 {\pm} 0.27$	0.10 ± 0.06
Surface	106 ± 8	4.84 ± 0.40
BG	735 ± 20	7.36 ± 0.61
Data	739	14
WIMPs best-fit for m=200 GeV: 4.7 10 ⁻⁴⁷ cm ²	3.56	1.70

- Reference region is defined as between NR median and NR -2sigma
- ER is the most significant background and uniformly distributed in the volume
- Surface background contributes most in reference region, but its impact is subdominant in inner R
- Neutron background is less than one event, and impact is further suppressed by position information
- Other background components are completely sub-dominant
- Numbers in the table are just for illustration, statistical interpretation is done based on profile likelihood analysis

Dark Matter Search Results

- Results interpreted with unbinned profile likelihood analysis in cs1, cs2, r space
- piechart indicate the relative PDF from the best fit of 200
 GeV/c² WIMPs with a cross-section of 4.7x10⁻⁴⁷ cm²

- Results interpreted with unbinned profile likelihood analysis in cS1, cS2, r space
- Core volume to distinguish WIMPs over neutron background

Statistical Interpretation

- No significant (>3 sigma) excess at any scanned WIMP mass
- Background only hypothesis is accepted although the p-value of ~0.2 at high mass (200 GeV and above) does not disfavor a signal hypothesis either

Extended unbinned profile likelihood analysis

- Example left: Background and 200 GeV WIMP signal best-fit predictions, assuming 4.7 x 10⁻⁴⁷ cm², compared to data in 1.3 t and 0.9 t
- Most significant ER & Surface backgrounds shape parameters included
- Safeguard to protect against spurious mismodeling of ER background

Safeguard

- A term added to the likelihood that incorporates uncertainties in modeling of the background, against calibration
- Accounts for mismodeling of calibrated background
- Gives indication on the quality of modeling
- Prevents ER band leakage mismodeling

JCAP 1705 (2017) no.05, 013

XENON1T Dark Matter Search Results

- Most stringent 90% CL upper limit on WIMP-nucleon cross section at all masses above 6 GeV
- Factor of 7 more
 sensitivity compared
 to previous
 experiments (LUX, PandaX-II)
 - ~ 1sigma upper fluctuation at high WIMP masses, could be due to background or signal

Minimum at 4.1×10^{-47} cm² for a WIMP of 30 GeV/c^2

More on the plate

- ER low rate and improved energy resolution allow most sensitive searches on many channels (axions, nuclear transitions...)
- EFT, chiral EFT, π -exchange, inelastics and other interpretations of current data
- Extending the range to high E
- Annual modulation
- Low mass searches with alternatice channels (S2-only, Migdal effect...)

XENONnT – Swift upgrade

MINIMAL UPGRADE

XENON1T infrastructure and sub-systems originally designed for a larger LXe TPC

FIDUCIAL XE TARGET

Fiducial mass: ~4 t Target LXe mass: 5.9 t Total LXe mass: 8 t

BACKGROUND

Identified strategies to reduce ²²²Rn backgorund by a factor ~10

FAST TURNAROUND

Installation starts in 2018 Commissioning in 2019

NEW TPC Larger inner cryostat 476 PMTs

LXe PURIFICATION

Faster cleaning of large LXe volume (5000 SLPM)

RADON DISTILLATION

Online removal of ²²²Rn emanated inside the detector

NEUTRON VETO

Tagging and in-situ measurement of neutroninduced background

DARWIN – The ultimate LXe exp

- Can we reach the ν floor?
 - Would require O(50t) Xe

1606:07001

- Backgrounds at unprecedented levels
- Technology stretching to the end: HV, purity, calibration, stability...
- Probably means cooperation between long-time competitors

Summary

- The XENON1T took a full tonne X year of DM search data, and has the highest sensitivity for all WIMP masses > 6 GeV by factor ~7
- Strongest limit above 6 GeV on WIMP-nucleon SI cross-section at 4.1x10⁻⁴⁷ cm² for a WIMP of 30 GeV
- No SI WIMP signal was found, albeit a small statistical fluctuation of high E/m_{χ}
- The (low E)ER and NR backgrounds are the lowest ever recorded
- XENONnT upgrade in full speed expecting first light in 2019!
- Many more results on the way ER, axions, DEC, modulation, EFT...

