SEARCH FOR DARK MATTER WITH THE SABRE EXPERIMENT

F. Nuti* for the SABRE Collaboration *The University of Melbourne DSU 2018, Annecy, France 25th of June 2018

Picture by M. Volpi

Sodium-iodide with Active Background REjection

Goal: search for annual modulation compatible with Galactic Dark Matter interactions

Strong modulation observed by DAMA/LIBRA with 250 kg of Nal(TI) crystals

- Energy ∈ [1,6] keV
- Phase 148 ± 6 days
- Amplitude ≈ 10⁻² cpd/kg/keVee
- Background ≈ 1 cpd/kg/keVee

Null results with other techniques (see Xenon1T/LUX results)

SABRE can perform a modelindependent verification/confutation of DAMA/LIBRA results

22/06/2018

THE COLLABORATION

22/06/2018

Francesco Nuti

3

THE SABRE PRINCIPLES

ULTRA PURE CRYSTALS

- Orystal radioactivity is the experiment's main background: ⁴⁰K, ⁸⁷Rb, ²³⁸U, ²³²Th, ²¹⁰Pb
- Rate [cpd/kg/keV] Collaboration with Merck (former Sigma-Aldrich) to produce Astro-grade powder with reduced contaminations
- Growth procedure tested with minimal contamination
- High-purity full-scale crystal in production

First large crystal ($\approx 2 \text{ kg}$)

di iii 10^{-3}			
Element	Nal Powder	Crystal	DAMA Crystal
^{nat} K	3.5 - 18 ppb	9 ± 1 ppb	13 ppb
²³⁸ U	< 1 ppt	< 1 ppt	0.7 – 7.5 ppt
²³² Th	< 1 ppt	< 1 ppt	1 ppt
⁸⁷ Rb	0.2 ppb	< 0.1 ppb	< 0.35 ppb
Francesco N	uti		

SABRE-PoP

²³²Th

⁴⁰K

²¹⁰Pb

10-1

10⁻²

Tot Background, veto on

⁸⁷Rb

238

LOW ENERGY SENSITIVITY

- SABRE aims to be sensitive to the energies covered by DAMA/LIBRA 1-6 KeVee and below
- Current Design:
 - 2 x Hamamatsu R11065-20 3" PMTs per crystal with High QE: > 35% and minimal contaminations
 - Direct PMT-Crystal coupling for maximal light yields
 - Custom pre-amplifiers and super bialkali photocathodes → less after-glow and dark noise

Crystal

ACTIVE BACKGROUND REJECTION

- Crystals surrounded by a liquid scintillator detector
- Veto processes with energy
 > 100 keVee
- Goal: reject external and intrinsic backgrounds
- Very effective in rejecting ⁴⁰K crystal events

7

DOUBLE LOCATION

- Twin experiments:
 - LNGS (Italy)
 - SUPL (Australia)
- Oifferent environmental conditions:
 - Seasonal effects with opposite phase
 - Rock composition and radiopurity
 - Independent radon, temperature, pressure control systems and power supply

STAWELL UNDEGROUND PHYSICS LABORATORY

- Clean laboratory @ 1025m in the Stawell gold mine
- Construction to start in second half of 2018
- Host SABRE and other experiments

10 m

22/06/2018

Surface

Clean-room, low radon areas

34.5 m

CLEANING ANTE ROOM

FUTUR CLEAN AB AR

MAIN EXPERIMENTAL HALL

FLAT BUNDED AREA

PROOF OF PRINCIPLE

THE UNIVERSITY MELBOURN

A Proof of Principle (PoP) phase of the experiment is in preparation @ LNGS

- I Nal(Tl) crystal (~5kg)
- Active veto:
 - Cylindrical vessel
 (Ø x h) = (1.35 m x 1.50 m)
 - PC+PPO (3g/l) scintillator (mass ≈ 2 ton)
 - 10 Hamamatsu R5912-100 PMTs
- Hybrid passive shielding:
 - Bottom: 15 cm Pb + 10 cm PE
 - Sides: 40 cm PE + 90 cm water
 - Top: 10 cm PE + 2cm Stainless Steel +80cm water
 - Internal volume flushed with N₂ to remove radon

Goals:

- Characterize crystal contaminations, particularly ⁴⁰K
- Test active veto performance

22/06/2018

SABRE SIMULATION

- GEANT4 simulation of the Proof of Principle detector and estimate
 - of the expected background
- Considered contaminations in
 - Nal(Tl) crystals
 - Crystal wrapping + PMTs
 - Crystal enclosure
 - Crystal insertion system (CIS)
 - Vessel, Liquid Scintillator, vessel PMTs (Veto)
- Activity values from preliminary measurements and literature (see backup)
- Results validated by independent simulations within the collaboration
- Additional studies on shielding and external backgrounds on going 22/06/2018

MEASUREMENT MODE (KMM)

Target ⁴⁰K electron capture (3 keV auger e^{-} + 1.46 MeV γ) in the crystal and other processes with large energy deposits in the scintillator

Rate [cpd/kg/keV] $E(Scintillator) \in [1280, 1640] \text{ keVee}$ SABRE-PoP Tot Background KMM $E(Crystal) \in [2,4]$ keVee Crystal **Crystal PMTs** Crystal (Cosmogenic) **Element Expected rate** [cpd/kg/keV] Crystal (other radiogenic) 5.1E-05 1.8E-02 Crystal (cosmogenic*) 10⁻² 1.1E-03 **Crystal PMTs** 10^{-3} 1.3E-03 Enclosure 7.7E-04 CIS 10^{-4} 6.2E-03 Veto 10^{-5} Total background 2.7 E-02 2 0 6 8 10 ⁴⁰K in Crystal 1.9E-01

* After 2 months underground

MELBOURN

- Large cosmogenic 22 Na background for E < 2 keV
- Main background in the region of interest from Veto Francesco Nuti 12

22/06/2018

DARK MATTER MODE (DMM)

MELBOURN

Test the active rejection power of the liquid scintillator system and the expected background in the crystal

22/06/2018

Francesco Nuti

EXPECTED SENSITIVITY

Confirm DAMA/LIBRA at 6σ
 Refute it at 5σ

The 90% C.L. limit (black), the 1 σ (green) and 2 σ (yellow) bands, and the DAMA Phase-1 3 σ and 5 σ confidence regions (blue)

Spin-independent WIMP nuclear scattering limits as strong as 10⁻⁴² cm²

CONCLUSION

- SABRE can perform an independent high sensitivity verification of the DAMA/LIBRA modulation
- SABRE features:
 - High-purity Nal(Tl) crystals
 - Low energy sensitivity
 - Active background rejection
 - Twin detectors
- Proof of Principle phase in preparation and expected to run in the second half of 2018
- Sackground levels evaluated with GEANT4 simulations:
 - 0.027 cpd/kg/keV for KMM (⁴⁰K excluded)
 - 0.22 cpd/kg/keV for DMM
- Full scale experiment can confirm/reject DAMA/LIBRA results with 3 years of data

Backup

DAMA/LIBRA PHASE-1

^{22/06/2018}

SUPL CHARACTERISTICS

- Clean lab similar to SNOLab
- Rn activity < 100 Bq/m³ in "clean area". Surface coating to inhibit Rn.
- Temp.: 19±2 °C, Relative humidity 40% 50%, remote monitoring & control.
- Low radiation concrete and finishing; sampling all sand and cement.

	Gran Sasso Lab. Reference	Stawell
Neutron Flux	4 x 10 ⁻⁶ n/s/	<7 x 10 ⁻⁶ n/s/cm ² UL
Gamma-ray flux below 3 MeV	0.73 γ/s/cm ²	<2.5 γ/s/cm² UL
Radioactivity levels of rock		
Rock ²³⁸ U (ppm) @ 880m SUPL	2.63	0.64
Rock 232Th (ppm) @ 880m SUPL	0.72	1.63
Refuge Radon Bq/m ³ (12 day accumulation, ventilated)	<i>O</i> (50)	36±5 21°C, 1056 kPa, 21% humidity

CRYSTAL BACKGROUND

Nuclide	Activity	Reference
⁴⁰ K	10 ppb	SABRE (in preparation)
²³⁸ U	< 1 ppt	
²³² Th	< 1 ppt	SABRE (arXiv:1601.05307)
⁸⁷ Rb	< 0.1 ppb	
²¹⁰ Pb	0.03 mBq/kg	DAMA (arXiv:0804.2738)

E [keV]

⁴⁰K and ⁸⁷Rb (upper limit) contaminations are dominant in DMM the largest background from cosmogenic activation is due to 121Te

Francesco Nuti

Cosmogenic after 6 months

Nuclide	Activity [mBq/kg]	Reference
²² Na	0.8	LNGS
126	4.3	(M.Laubenstein)
²⁴ Na	2.6E-04	DAMA (<u>arXiv:0804.2738</u>)
129	0.95	
¹²⁵	7.2	
¹²¹ Te	1.27	
¹²¹ mTe	0.89	ANAIS (arXiv:1604.05587)
¹²³ mTe	1.17	
¹²⁵ mTe	0.92	
¹²⁷ mTe	0.37	

CONTAMINATIONS (1/2)

$\langle \mathbf{\omega} $	Í
	Z
N PAN /	
	ME

Crystal				
Isotope	Activity	Refer	ence	
⁴⁰ K	10 ppb	SABF	RE (in preparation)	Radi
²³⁸ U	< 1 ppt			9go
²³² Th	< 1 ppt	(SABRE	enic
⁸⁷ Rb	< 0.1 ppb	(a	1/10/1003071	
²¹⁰ Pb	0.7 mBq/kg	(ar	ANAIS Xiv:1604.05587)	_
lsotope	Activity [mB	q/kg]	Reference	6
²² Na	0.8		LNGS	m
126	4.3		(M.Laubenstein)	0ge
²⁴ Na	2.6 E-4		DAMA	Phic
129	0.95		(arXiv:0804.2738)	aft
¹²¹ Te	1.27			er (
¹²¹ mTe	0.89		ΔΝΔΙς	l m
¹²³ mTe	1.17		(arXiv:1604.05587)	ion:
¹²⁵ mTe	0.92			ths
¹²⁷ mTe	0.37			

0.37

Crystal PMTs (XENON1T arXiv:1503.07698)

Isotope	Activity [mBq/PMT]		
	Body	Window	Ceramic plate
⁴⁰ K	<5.9	< 0.48	6.5
⁶⁰ Co	0.65	< 0.042	<0.19
238 U	< 0.52	<1.8	13
226 Ra	< 0.29	0.040	0.29
232 Th	< 0.0098	< 0.037	0.70
$^{228}\mathrm{Th}$	<0.41	< 0.015	0.13

PTFE crystal wrapping (XENON100 arXiv:1207.5988)

Isotope	Activity [mBq/kg]
⁴⁰ K	3.1
238 U	0.25
232 Th	0.5

CONTAMINATIONS (2/2)

PTFE parts of enclosure (XENON100 arXiv:1103.5831)

Isotope	Activity [mBq/kg]
40 K	<2.25
^{238}U	< 0.31
$^{232}\mathrm{Th}$	< 0.16
60 Co	< 0.11
^{137}Cs	< 0.13

Steel vessel (SABRE GDMS method)

Isotope	Activity/Concentration
40K	4 ppb
238U	$0.3 \; \mathrm{ppb}$
$232 \mathrm{Th}$	< 0.1 ppb

Veto PMTs

(DarkSide-50 arXiv:1512.07896)

2	•	
	Isotope	Activity[mBq/PMT]
	40K	649
	238U	883
	$232 \mathrm{Th}$	110
	$235\mathrm{U}$	41

Copper parts of enclosure (Cuore-0 arXiv:1609.01666)

•		-	
Isotope	Half life [days]	Activity [mBq/kg]]
⁴⁰ K		0.7	1
²³⁸ U		0.065	
232 Th		0.002	
⁶⁰ Co	1925	0.340	1
⁵⁸ Co	71	0.798	J
⁵⁷ Co	272	0.519	
56 Co	77	0.108	
54 Mn	312	0.154	
^{46}Sc	84	0.027	
59 Fe	44	0.047	
⁴⁸ V	16	0.039	

Liquid scintillator

(Borexino Nucl. Instr. & Meth. A609 (2009) 58)

· •
Activity [mBq/kg]
$3.5\cdot10^{-7}$
$< 1.2 \cdot 10^{-6}$
$< 1.2 \cdot 10^{-6}$
$1.7\cdot 10^{-6}$
$1.7\cdot 10^{-6}$
$<1.2\cdot10^{-6}$
$4.1 \cdot 10^{-1}$
$3.5\cdot 10^{-6}$
$3.5\cdot 10^{-7}$

SIMULATION SETTINGS

●GEANT 4 10.2.p03

- Hadronic physics list: Shielding
- EM physics list:
 - G4EmStandardPhysics_option4
 - Fluorescence, auger electron emission and particle induced atomic relaxation accounted
 - G4EmExtraPhysics

COSINE-100 PREDICTIONS

Based on a total exposure of 212 kg·year and flat representative background of 4.3 cpd/kg/keV

MELBOURNE