

Istituto Nazionale di Fisica Nucleare

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics

Dark Side of the Universe 2018 Annecy-le-Vieux, France

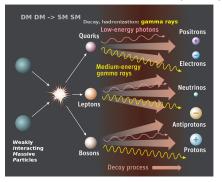
Silvia Manconi

(University of Turin & INFN)

June 26, 2018

In collaboration with: Hannes Zechlin, Fiorenza Donato

Outline


1 Indirect DM detection with γ -rays

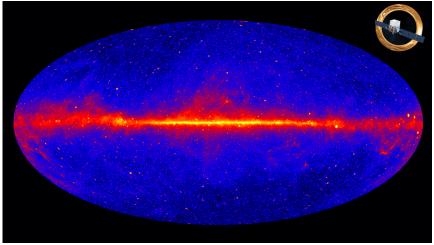
2 Photon counts statistics of Fermi-LAT data

3 Results for Galactic Dark Matter

Indirect dark matter (DM) detection with γ -rays

Prompt γ -rays emission:

- Production, decay of π^0
- Hadronization
- Internal bremsstrahlung
- Monocromatic lines

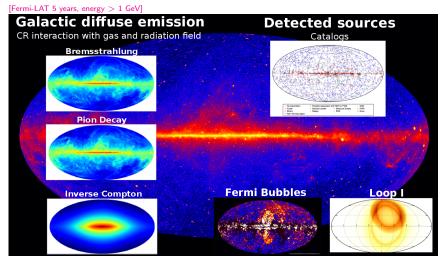

Focus on Weakly Interacting Massive Particles, benchmark

other candidates: axions, ALPs, ...

manconi@to.infn.it

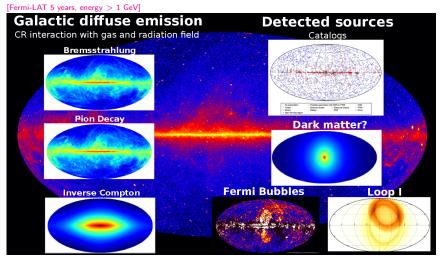
The γ -ray sky seen from Fermi-LAT

[Fermi-LAT 5 years, energy > 1 GeV]

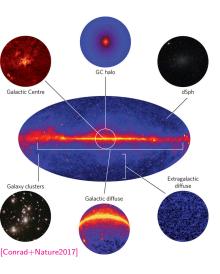

Fermi-Large Area Telescope: high-energy gamma-ray telescope, data from E = 20 MeV to more than 300 GeV, 10 years of operation

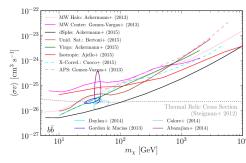
manconi@to.infn.it

Constraining Galactic DM with photon count statistics DSU 2018


4

The γ -ray sky seen from Fermi-LAT


+ isotropic emission from unresolved sources and truly diffuse processes

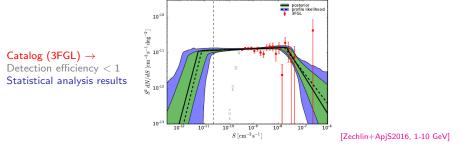

The γ -ray sky seen from Fermi-LAT

+ isotropic emission from unresolved sources and truly diffuse processes... DM?

Targets for dark matter searches

7

Constraints from different targets, see [Charles+PhysRep2016]


This talk: Galactic DM halo, high latitudes

Decomposing the γ -ray sky

 γ -ray sky = Galactic diffuse + Extragalactic γ -ray Background (EGB) emissions.

EGB= point sources* + isotropic diffuse background

Source count distribution dN/dS: # of sources N per $d\Omega$ with integral flux in (S, S + dS).

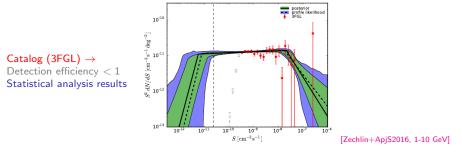
- fundamental to understand composition of EGB
 - $(\Rightarrow \text{origin of IceCUBE } \nu, \text{ UHECR, DM [Ahlers+ApJ2017,Taylor+PRD15,DiMauro+PRD15]})$
- extrapolations below detection threshold lead to significant uncertainties
- Statistical methods increase sensitivity for resolving faint point sources!

*AGN, mAGN, star-forming galaxies,...

manconi@to.infn.it

Constraining Galactic DM with photon count statistics

DSU 2018

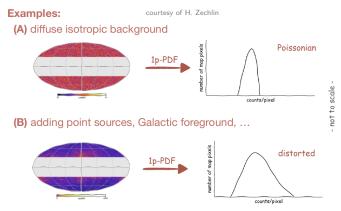

8

Decomposing the γ -ray sky

 γ -ray sky = Galactic diffuse + Extragalactic γ -ray Background (EGB) emissions.

EGB= point sources* + isotropic diffuse background

Source count distribution dN/dS: # of sources N per $d\Omega$ with integral flux in (S, S + dS).


- fundamental to understand composition of EGB
 - (\Rightarrow origin of IceCUBE ν , UHECR, DM [Ahlers+ApJ2017,Taylor+PRD15,DiMauro+PRD15])
- extrapolations below detection threshold lead to significant uncertainties
- Statistical methods increase sensitivity for resolving faint point sources!

*AGN, mAGN, star-forming galaxies,...

8

Pixel count statistics with the 1-point Probability Distribution Function (1pPDF)

Statistical analysis of intensity to decompose the $\gamma\text{-ray sky}$

Details in [Malyshev+ApJ2011], [Zechlin+ApjS2016]. Similar methods used also in radio [Vernstrom+MNRAS2015] and X-ray [Soltan+A&A2011]

manconi@to.infn.it

Constraining Galactic DM with photon count statistics

The **1pPDF** analysis

Separate sources based on statistical properties of their photon counts

Modeling: probability generating functions $\mathcal{P}^{(p)}(t)$:

$$p_k^{(p)} =$$
 probability to find k photons in pixel (p)

OBSERVED Probability distribution of photon counts in pixels $p_k^{(p)}$

$$p_k^{(p)} = \frac{1}{k!} \left. \frac{\mathrm{d}^k \mathcal{P}^{(p)}(t)}{\mathrm{d}t^k} \right|_{t=0}$$

= t = (-1) + 1

WANTED Decompose γ-ray sky in: -Point sources dN/dS -Diffuse contributions

$$\mathcal{P}^{(p)}(t) = \sum_{k=0}^{\infty} p_k^{(p)} t^k = \exp\left(\sum_{m=1}^{\infty} x_m^{(p)}(t^m - 1)
ight)$$

 $x_{m}^{(p)}$

 p^{2} = expected number of sources contributing *m* photons per pixel *p*

- point sources (dN/dS)
- Galactic diffuse emission
- Diffuse isotropic background
- Dark matter ?

manconi@to.infn.it

Constraining Galactic DM with photon count statistics

The **1pPDF** analysis

Separate sources based on statistical properties of their photon counts

Modeling: probability generating functions $\mathcal{P}^{(p)}(t)$:

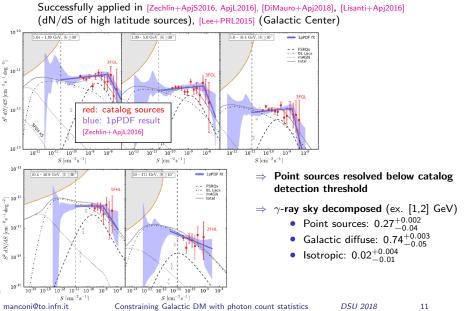
$$p_k^{(p)} =$$
 probability to find k photons in pixel (p)

OBSERVED Probability distribution of photon counts in pixels $p_k^{(p)}$

$$p_k^{(p)} = \frac{1}{k!} \left. \frac{\mathrm{d}^k \mathcal{P}^{(p)}(t)}{\mathrm{d}t^k} \right|_{t=0}$$

WANTED Decompose γ-ray sky in: -Point sources dN/dS -Diffuse contributions

$$\mathcal{P}^{(p)}(t) = \sum_{k=0}^{\infty} p_k^{(p)} t^k = \exp\left(\sum_{m=1}^{\infty} x_m^{(p)}(t^m - 1)\right)$$


 $x_m^{(p)}$ = expected number of sources contributing *m* photons per pixel *p*:

- point sources (dN/dS)
- Galactic diffuse emission
- Diffuse isotropic background
- Dark matter ?

manconi@to.infn.it

Constraining Galactic DM with photon count statistics

1pPDF results: source count distribution dN/dS

1pPDF applied to **Galactic DM searches** see arXiv:1710.01506

Investigate sensitivity reach of 1-point statistics for constraining a diffuse DM component at high latitudes

- \Rightarrow Unresolved point sources: *subdominant BUT comparable* to DM component
- ⇒ 1pPDF is *indipendent* from source catalogs
- \Rightarrow First time 1pPDF is tested for constraining Milky Way DM halo

Similar analysis at high latitudes, standard template fitting: [Chang et al, arXiv:1804.04132]

1pPDF applied to **Galactic DM searches** see arXiv:1710.01506

Investigate sensitivity reach of 1-point statistics for constraining a diffuse DM component at high latitudes

- ⇒ Unresolved point sources: *subdominant BUT comparable* to DM component
- ⇒ 1pPDF is *indipendent* from source catalogs
- \Rightarrow First time 1pPDF is tested for constraining Milky Way DM halo

Similar analysis at high latitudes, standard template fitting: [Chang et al, arXiv:1804.04132]

1pPDF applied to Galactic DM searches

Analysis overview:

- 1 Data: Fermi-LAT 8yrs, 3 energy bins from 1 GeV to 10 GeV
- 2 DM profile:* Einasto, $\rho_{\odot} = 0.4 \text{ GeV cm}^{-3}$ [Catena+JCAP2010]
- **3** DM spectra: dN_f/dE from [Cirelli+JCAP2010], $b\bar{b}$, $\tau^+\tau^-$ final states
- 4 Main systematics: Galactic diffuse emission
 - \Rightarrow high latitudes $|b| > 30 \deg$
 - ⇒ different benchmarck templates
 - ⇒ ROI optimization
- 5 Simulations*: to validate analysis framework

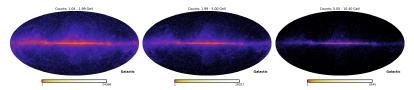


figure: Counts maps for 8 years of real-sky data and the different energy bins

see backup slides

manconi@to.infn.it

Constraining Galactic DM with photon count statistics DSU 2018

13

Main systematics: Galactic Diffuse Emission

Complex modeling, e.g. possible degeneracy Inverse Compton \iff DM halo

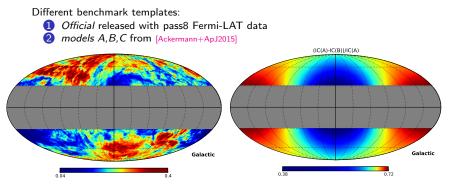
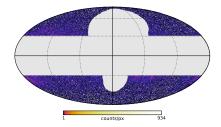


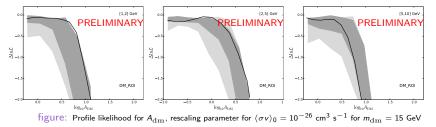
figure: Relative difference between Galactic diffuse emission (left) and Inverse Compton components only (right) from mod A and mod B integrated in the energy bin [2,5] GeV for |b| > 30 deg

 \Rightarrow Region of interest search depends from the galactic diffuse emission

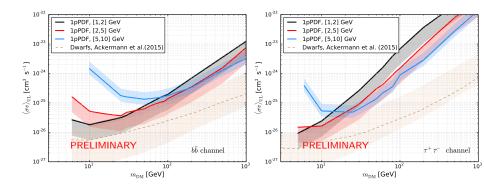
Better modeling: ongoing effort, e.g. SkyFact [Storm+17], [Porter+17,Gagero+15, Selig+15]

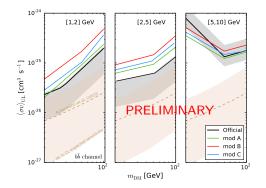
manconi@to.infn.it


Constraining Galactic DM with photon count statistics DSU 2018 14


Region Of Interest (ROI) optimization

- Mask galactic plane: |b| > 30 40 deg
- Mask stuctures: Fermi Bubbles, Loop I
- Small ROI: over-subtraction of background
- Simulations w/o DM, expected sensitivity


\Rightarrow DM_ROI at high latitudes where real sky results consistent with simulations in all bins:


Results: upper limits on $\langle \sigma \mathbf{v} \rangle$

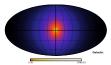
Sensitivity of 1pPDF for DM searches at high latitudes is comparable with other methods and targets

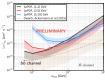
Systematics on Galactic Diffuse Emission

upper limits on $\langle \sigma v \rangle$

 \Rightarrow Scatter between models: factor $\sim 2-5$ in $\langle \sigma v \rangle$ model B has lower inverse Compton for |b| > 30 deg, so more room for DM

Galactic DM with photon counts statistics at high latitudes- *Summary*


- The 1-point Probability Distribution Function is a powerful statistical method to:
 - ★ resolve faint point sources
 - \star dissect γ -ray sky components
- 1pPDF sensitivity for Galactic DM halo signals at high latitudes was explored in simulated and real data (8 yrs Fermi-LAT, [1,10] GeV)


Results:

- Sensitivity is comparable with other searches and methods
- 2 Limited by systematics from background Galactic emission modeling

Constraining Galactic dark matter with gamma-ray pixel counts statistics H.Zechlin, S.M., F.Donato arXiv:1710.01506

Thank you for your attention!

manconi@to.infn.it

Constraining Galactic DM with photon count statistics DS

DSU 2018

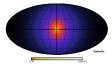
18

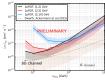
Galactic DM with photon counts statistics at high latitudes- *Summary*

- The 1-point Probability Distribution Function is a powerful statistical method to:
 - \star resolve faint point sources
 - \star dissect γ -ray sky components
- 1pPDF sensitivity for Galactic DM halo signals at high latitudes was explored in simulated and real data (8 yrs Fermi-LAT, [1,10] GeV)

Results:

- Sensitivity is comparable with other searches and methods
- 2 Limited by systematics from background Galactic emission modeling


Constraining Galactic dark matter with gamma-ray pixel counts statistics H.Zechlin, S.M., F.Donato arXiv:1710.01506


Thank you for your attention!

Backup

Simulations of the Fermi-LAT sky

Components simulated with Fermi Science Tool gtobbsim:

- 1 Point sources following same dNdS of real sky
- **2** Galactic diffuse background (gll_iem_v06)
- **3** Isotropic background (iso_P8R2_ULTRACLEANVETO_V6_PSF3_v06)

Each simulation contains a list of point sources from a different Monte Carlo realization of the $dN/dS\colon$

- Power law, $\Gamma_{mean} = 2.4$, $\sigma_{\Gamma} = 0.4$
- $S_{\min} = 10^{-12} \text{cm}^{-2} \text{s}^{-1}$
- random positions across the sky

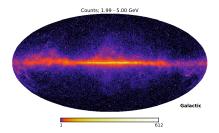
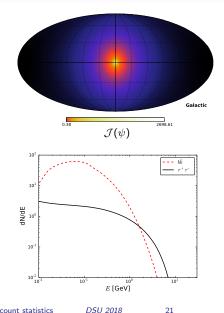


figure: Counts map for a simulation w/o DM, $\left[2{,}5\right]\,\text{GeV}$

manconi@to.infn.it

Galactic DM halo modeling

Flux per unit energy and solid angle:


$$\frac{\mathrm{d}\phi_{\mathrm{DM}}}{\mathrm{d}E\mathrm{d}\Omega} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2} r_{\odot} \frac{\rho_{\odot}^2}{m_{\mathrm{DM}}^2} \sum_f \left(\frac{\mathrm{d}N_f}{\mathrm{d}E} B_f \right) \mathcal{J}(\psi) \,.$$

Spatial :

- Smooth DM halo: Einasto. $\rho_{\odot} = 0.4 \text{ GeV cm}^{-3}$ [Catena+JCAP2010]
- Extragalactic: subdominant -
- possible DM suhalos absorbed by dN/dS

Energy:

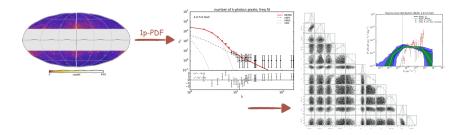
- WIMP self-annihilations into pure $b\bar{b}$, $\tau^+\tau^$ final states
- dN_f/dE from [Cirelli+JCAP2010]

manconi@to.infn.it

Fermi-LAT Data selection

- 8 years of Pass8 data [239557417, 492018220] s MET
- DATA_QUAL==1 and LAT_CONFIG==1
- evclass=ULTRACLEANVETO, evtype=PSF3
- Energy bins: [1, 2] GeV, [2,5] GeV, [5,10] GeV as in [Zechlin+ApjS2016, ApjL2016]
- Derived PSF widths: 0.31 deg, 0.18 deg, 0.10 deg
- HEALPix order 7

The 1-point Probability Distribution Function analysis


• Pixel-dependent likelihood:

$$\mathcal{L}(\mathbf{\Theta}) = \prod_{p=1}^{N_{\mathrm{pix}}} P(k_p)$$

Parameter estimation:

profile likelihood from Bayesian posterior, MCMC sampling (MultiNest)

Details in [Zechlin+ApjS2016].

