Next-to-minimal Dark Matter @ LHC

Nishita Desai

LUPM, Montpellier*

Jusai

Based on: arXiv:1804.0235 (with A. Bharucha and F. Brümmer)

26 June 2018 Dark Side of the Universe 2018; Annecy

Complementarity of searches

Anatomy of a typical detector @ LHC

What does a collision event look

- Detectable objects are photons, electrons, muons, hadrons (which form jets), and invisible neutrinos (in the form of missing momentum or MET)
- Most new particles will decay into SM particles
- We use kinematic distributions of detectable objects to define signal (i.e. new physics) and background (i.e. SM physics)

Writing down a model for DM

Is it a Scalar? Vector? Dirac or Majorana Fermion?

Does it couple directly to some SM particle (Z, h) ? If there is a mediator, how does the mediator couple to SM? to Dark Matter?

Effective Field Theory

PRO: Simple, Easy to relate observables

CON: bad highenergy behaviour

Simplified models

Trying to get the best of both worlds

IDEA: write down the simplest field content (often a DM field + one mediator)

Complete Models

eg. SUSY, Universal Extra Dim, Little Higgs,...

PRO: Theoretically well motivated, fully calculable, extra particles

CON: Model Prejudices, complicated to understand

Bottom-up renormalisable DM models

	New	I		
#	Symmetries # Fields	0	Z 2	Z ₂ +
	1	"Minimal DM"	Pure "Higgsino" or "Wino" Scalar singlet DM Inert doublet DM	•••
	2	??	Singlet-Doublet (N,N+1 plet) DM Higgs Portal DM s/t-channel scalar mediator	Dark Photon s-channel V/A mediators
	3	??	SUSY neutralinos 	Z' mediator + higgs' L-R models Hidden Valley models

Dark Matter from adding only 1 new field

Dark Matter makes up ~20% of our universe; an EW scale particle (a.k.a. WIMP) seems to be a good fit

$$\Omega h^2 \sim 0.1 \Rightarrow \langle \sigma v \rangle \sim 1 \text{ pb} \cdot c$$

 $\Rightarrow m_{\chi} \sim O(10^2 - 10^3) \text{ GeV}; g \sim g_{\text{EW}}$

100 TeV collider?

Idea for a "next-to-minimal" scenario

One SU(2) x U(1) singlet χ + one SU(2) N-plet ψ \mathbb{Z}_2 stabilises the lightest state

$$\mathcal{L}_{\rm DM} = i \psi^{\dagger} \overline{\sigma}^{\mu} D_{\mu} \psi + i \chi^{\dagger} \overline{\sigma}^{\mu} \partial_{\mu} \chi - \left(\frac{1}{2}M\psi\psi + \frac{1}{2}m\chi\chi + \text{h.c.}\right) + \mathcal{L}_{\rm quartic} + \mathcal{L}_{\rm mix}$$

$$\mathcal{L}_{\rm quartic} = \frac{1}{2} \frac{\kappa}{\Lambda} \phi^{\dagger} \phi \chi \chi + \frac{1}{2} \frac{\kappa'}{\Lambda} \phi^{\dagger} \phi \psi^{A} \psi^{A} \qquad \text{Strong limits from DD}$$

$$\mathcal{L}_{\rm mix} = \frac{\lambda}{\Lambda} \phi^{\dagger} \tau^{a} \phi \ \psi^{a} \chi + \text{h.c.} \longrightarrow \theta \approx \frac{\sqrt{2}\lambda v^{2}}{\Lambda(M-m)} \qquad \text{N=3}$$

$$\mathcal{L}_{\text{mix}} = \frac{\lambda}{\Lambda^3} C_{A\,ik}^{j\ell} \phi^{\dagger i} \phi_j \phi^{\dagger k} \phi_\ell \psi^A \chi + \text{h.c.} \quad \longrightarrow \quad \theta \approx \sqrt{\frac{2}{3}} \frac{\lambda v^4}{\Lambda^3 (M-m)} \cdot \quad \text{N=5}$$

Collider searches: Quintuplet model

Direct Detection constraints

- Look at parameters that gives right relic density
- Low mixing angle gives low DD cross section; however, not a problem at the LHC because production is primarily Drell-Yan!

10

Brümmer et al; arXiv:1703.00370 Brümmer, Bharucha, Desai; arXiv:1804.02357

Prompt search limits: SUSY searches

LHC limit on WH final state; not stronger than displaced leptons

Other limits: charged track searches

Rule out long-lived region i.e. when mass difference is smaller than pion mass

Disappearing track searches

Displaced Lepton Search

The CMS displaced lepton search

Validation

Combination of displaced lepton and charged tracks

Limits on mixing angle

Provides a complementary lower limit on mixing

Filling the gaps in DM searches

DM + s-channel mediator Dilepton, dijet, mono-jet, displaced vertices "squark" & "slepton" searches, DM + t-channel mediator (disappearing) charged tracks, displaced leptons jets+MET, di-lepton+MET searches, SU(2) n-plets mono-jet, mono-photon, (disappearing) charged tracks, displaced leptons Di-gamma, **ALPs** non-pointing photons Sterile Neutrinos, leptons+MET, Z/higgs+MET **Heavy Neutral leptons** displaced vertices, displaced leptons

Some LLP limits

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

ATLAS Preliminary

Status: July 2015

*Only a selection of the available lifetime limits on new states is shown.

ARE WE MISSING SOMETHING?

Summary

- Long-lived particles predicted by many theories as a natural consequence
- LLP searches often have nearly zero background and can provide a clean signature
- If a model predicts LLPs, these searches are **more sensitive** than traditional searches
- **Co-annihilation partners** in DM models are often long-lived and can provide the first indications of signal
- Important to look at LLPs to cover full range of DM theory possibilities.