Asymptotic Scale Invariance, Vacuum Stability and Higgs Inflation

Kengo Shimada

EPFL (Lausanne, Switzerland)

arXiv: 1807.**** with Mikhail Shaposhnikov

Introduction

LHC experiment

- \cdot Higgs boson $m_h \simeq 125\,{
 m GeV}$
- The SM is consistent so far.

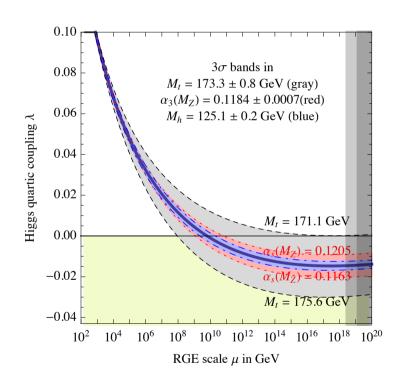
SM is valid up to very high energy scale?

 $ightharpoonup \lambda$ crosses zero, or touches zero.

EW vacuum is meta-stable.

Critical

D.Buttazzo, G.Degrassi, P.P.Giardino, G.F.Giudice, F.Sala, A.Salvio, A.Strumia (2014)



Introduction

LHC experiment

- · Higgs boson $m_h \simeq 125\,\mathrm{GeV}$
- The SM is consistent so far.

SM is valid up to very high energy scale?

 λ crosses zero, or touches zero.

EW vacuum is meta-stable.

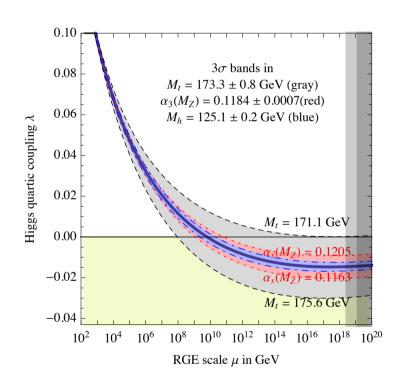
Critical

What does this imply?

DM, GW from PT, Strong CP...

Asymptotic scale invariance Higgs inflation

D.Buttazzo, G.Degrassi, P.P.Giardino, G.F.Giudice, F.Sala, A.Salvio, A.Strumia (2014)



Introduction

Scale Anomaly and Effective Potential

Asymptotic Scale Invariance and Stability

Asymptotic Scale Invariance and Higgs Inflation

Future Directions (DM, GW…??)

Summary

Invariance under
$$egin{cases} x^{\mu} o \sigma^{-1} x^{\mu} \ \Phi(x) o \sigma^{d_{\Phi}} \Phi(x) \end{cases}$$
 d_{Φ} : Mass dimension of dynamical fields Φ

Explicit mass scale breaks SI:

$$V = -\frac{\mu_{\rm EW}^2}{2} h^2 + \frac{\lambda}{4} h^4$$

In the SM of particle physics sector,

SI is broken by the negative Higgs mass term.

Scale invariant for $h\gg \mu_{\mathrm{EW}}$. (approximately)

If you want, $\mu_{\rm EW} \propto \phi$: dynamical but is NOT crucial here.

SI is anomalous with regularization/renormalization NOT respecting the symmetry.

Dimensional regularization $n=4-2\varepsilon$

$$\frac{\lambda h^4}{4} \Longrightarrow \mu^{\frac{2\varepsilon}{1-\varepsilon}} \times \frac{\lambda h^4}{4}$$

An explicit mass scale is introduced for the divergence and defines coupling "constants".

SI is anomalous with regularization/renormalization NOT respecting the symmetry.

Dimensional regularization $n=4-2\varepsilon$

$$\frac{\lambda h^4}{4} \Longrightarrow \mu^{\frac{2\varepsilon}{1-\varepsilon}} \times \frac{\lambda h^4}{4}$$

An explicit mass scale is introduced for the divergence and defines coupling "constants".

One-loop (CW) correction to Higgs potential

$$\Delta V \sim (-1)^F m^4 \ln \frac{m^2}{\mu^2}$$

Breaks the scale invariance

Effective potential
$$V_{\rm eff} = \frac{h^4}{4} \left[\lambda + \frac{B}{2} \ln \frac{h^2}{\mu^2} + \cdots \right]$$

$$\equiv \frac{\lambda_{\rm eff}(h)}{4} \, h^4$$

Effective potential
$$V_{\rm eff} = \frac{h^4}{4} \left[\lambda + \frac{B}{2} \ln \frac{h^2}{\mu^2} + \cdots \right]$$

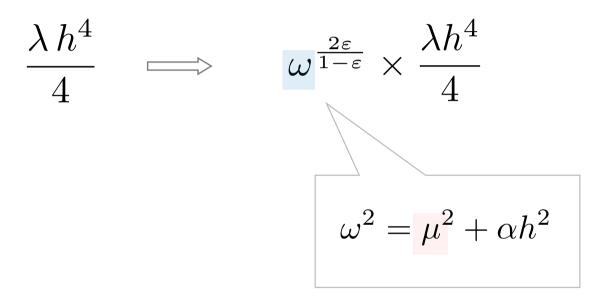
$$\equiv \frac{\lambda_{\rm eff}(h)}{4} h^4$$
 Destabilized at
$$B < 0 \qquad h_{\star} \sim 10^{10} {\rm GeV}$$
 if $m_t = 173 \, {\rm GeV}$

$$V_{\rm eff} = \frac{h^4}{4} \left[\lambda + \frac{B}{2} \ln \frac{h^2}{\mu^2} + \frac{B'}{8} \left(\ln \frac{h^2}{\mu^2} \right)^2 + \cdots \right]$$

$$\equiv \frac{\lambda_{\rm eff}(h)}{4} h^4$$

$$h \sim {\rm Planck}$$

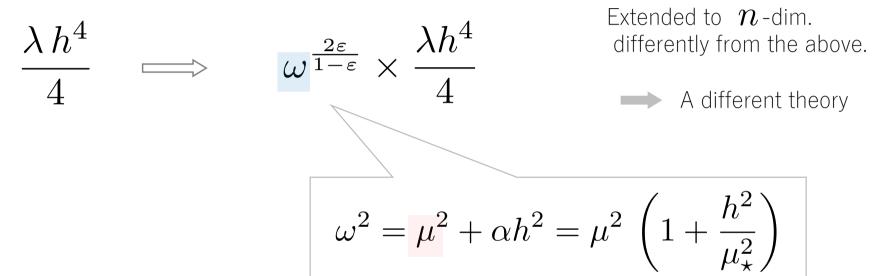
$$\lambda = B = 0$$
 if $m_t = 171 \, {\rm GeV}$ "Critical"



Field-dependent

Extended to $\,n$ -dim. differently from the above.

A different theory

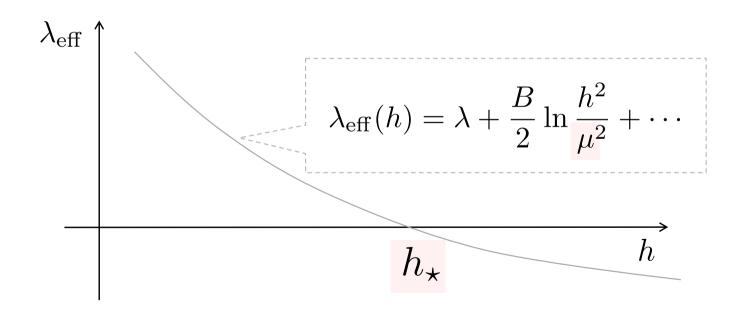


Explicit mass scale is negligible for

$$h \gg \mu_{\star}$$

Asymptotic Scale Invariance

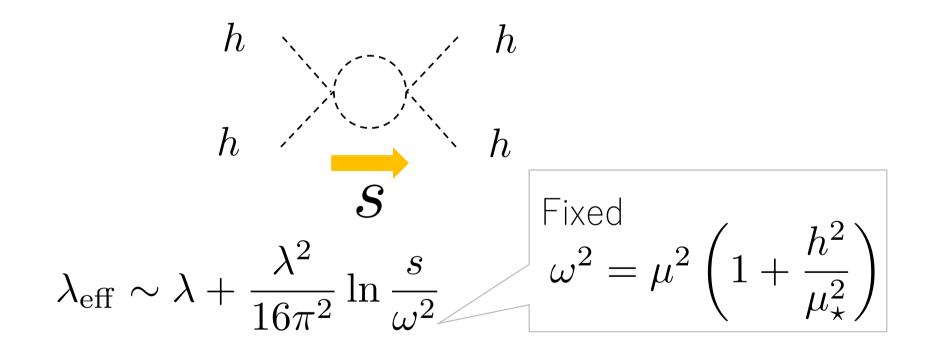
$$\lambda_{\text{eff}}^{\text{aSI}}(h) = \lambda + \frac{B}{2} \ln \frac{h^2}{\omega^2} + \cdots$$



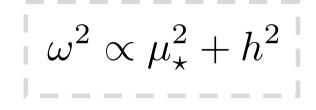
$$\lambda_{\rm eff}^{\rm aSI}(h) = \lambda + \frac{B}{2} \ln \frac{h^2}{\mu^2 (1 + h^2/\mu_\star^2)} + \cdots \qquad \lambda_{\rm eff}(\mu_\star) > 0$$
 EW vacuum is global minimum
$$h \sim \mu_\star \qquad \text{if } \mu_\star < h_\star$$

$$\lambda_{\rm eff}(\mu_\star)$$

Couplings run as energy scale of scattering increases.



$$\omega^{\frac{2\varepsilon}{1-\varepsilon}} \times \frac{\lambda h^4}{4}$$
 : Non-renormalizable



$$\frac{h^{4+2k}}{(\mu_{\star}^2 + h^2)^k} \qquad (k \ge 1)$$

 $\sim h^4$ for $h \gg \mu_\star$ Asymptotically SI

$$\omega^{\frac{2\varepsilon}{1-\varepsilon}} \times \frac{\lambda h^4}{4}$$
 : Non-renormalizable

$$\omega^2 \propto \mu_\star^2 + h^2$$

Non-polynomial operators are needed for renormalization

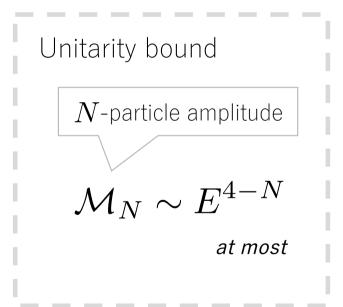
$$\frac{h^{4+2k}}{(\mu_{\star}^2 + h^2)^k} \qquad (k \ge 1)$$

Up to which energy scale is this effective theory valid?

$$\sim h^4$$
 for $h \gg \mu_\star$ Asymptotically SI

$$\frac{h^{4+2k}}{(\mu_{\star}^2 + h^2)^k}$$

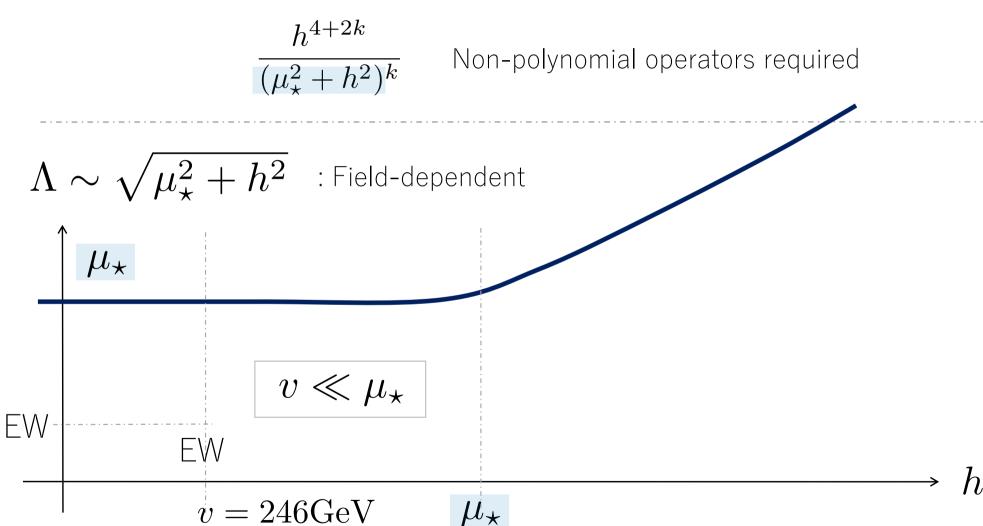
Non-polynomial operators required

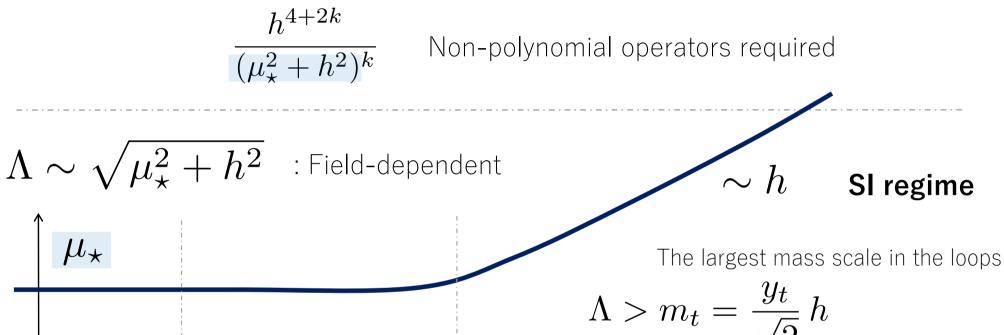


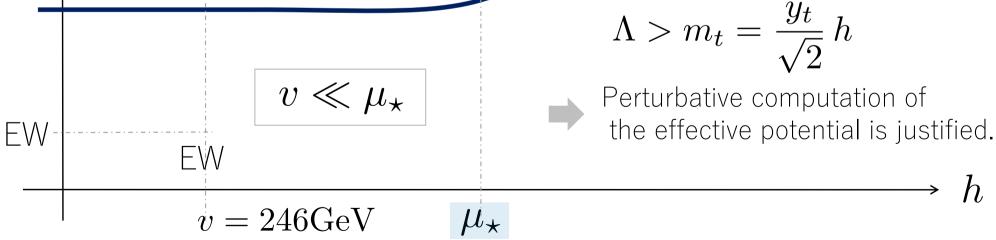
J.M.Cornwall, D.N.Levin, G.Tiktopoulos (1974)

Tree unitarity violation

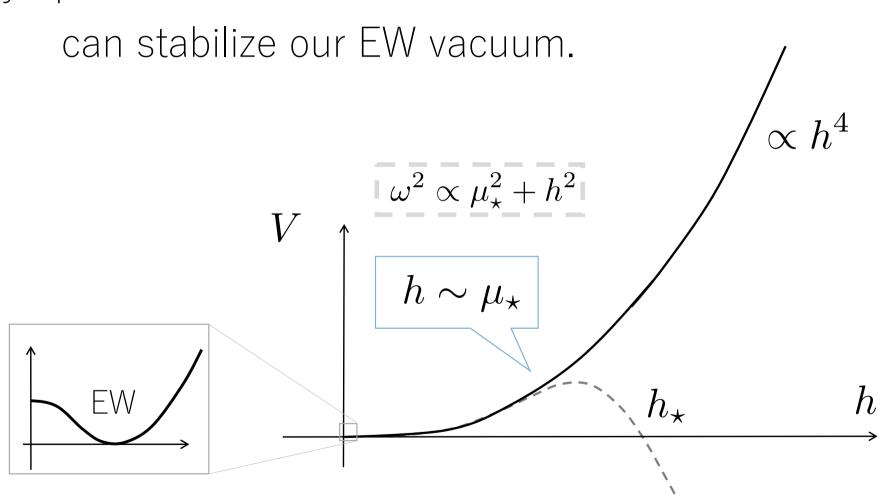
at
$$\Lambda \sim \sqrt{\mu_{\star}^2 + h^2}$$
 Strong coupling or New physics







Asymptotic Scale Invariance



$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_{\mathrm{P,eff}}^2}{2} \, R - \frac{g^{\mu\nu}}{2} \partial_\mu h \partial_\nu h - V(h) + \cdots$$
 Effective Planck mass
$$M_{\mathrm{P,eff}}^2 = M_{\mathrm{P}}^2 + \xi h^2$$

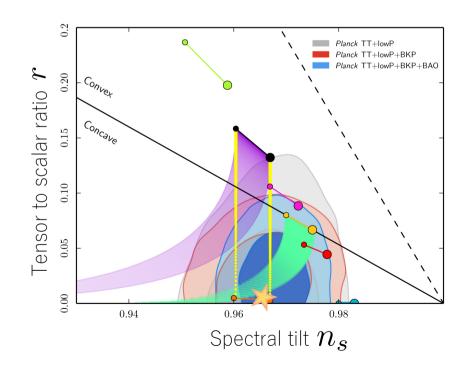
F.Bezrukov, M.Shaposhnikov (2007)

$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_{\mathrm{P,eff}}^2}{2} R - \frac{g^{\mu\nu}}{2} \partial_{\mu} h \partial_{\nu} h - V(h) + \cdots$$

Effective
$$M_{
m P,eff}^2 = M_{
m P}^2 + \xi h^2$$

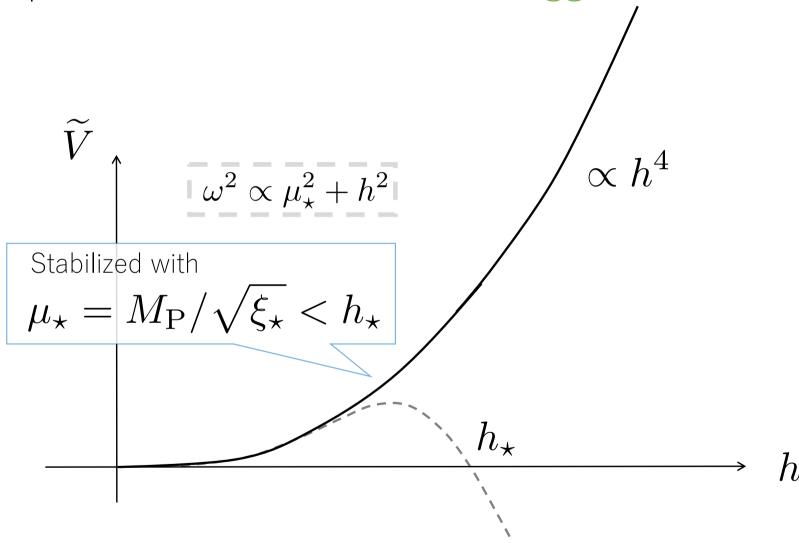
F.Bezrukov, M.Shaposhnikov (2007)

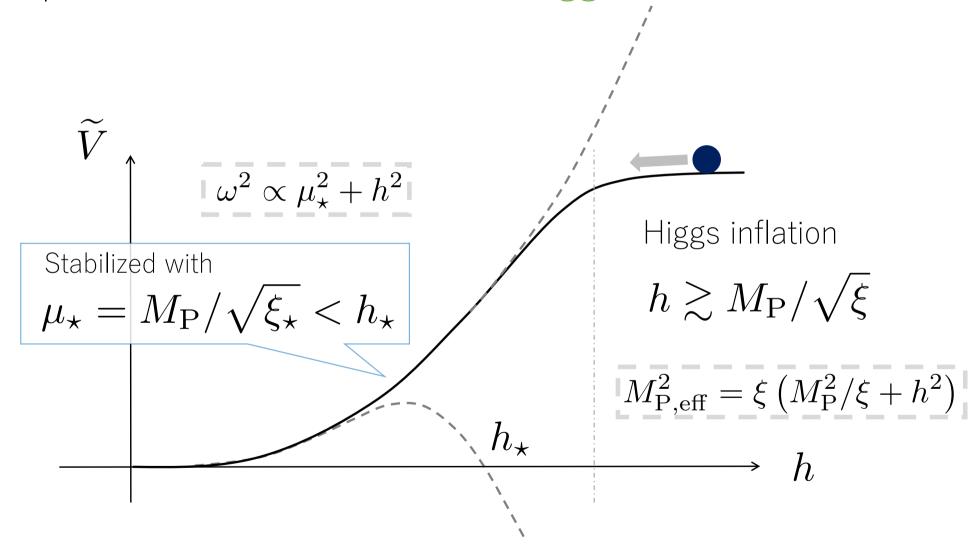
$$\xi \sim 10^4 \sqrt{\lambda}$$
 Large non-minimal coupling
$$\Rightarrow A_s \simeq 2.2 \times 10^{-9}$$



Renormalization prescription	$\omega^2 \propto$	$\frac{\lambda h^4}{4} \implies \omega^{\frac{2\varepsilon}{1-\varepsilon}} \times \frac{\lambda h^4}{4}$
I	$M_{\rm P}^2 + \xi h^2 = M_{\rm P}^2$	F.Bezrukov, M.Shaposhnikov (2007)
II	$M_{ m P}^2$ (constant)	A.O.Barvinsky, A.Y.Kamenshchik, A.A.Starobinsky (2008)

Renormalization prescription	$\omega^2 \propto$	$\frac{\lambda h^4}{4} \implies \omega^{\frac{2\varepsilon}{1-\varepsilon}} \times \frac{\lambda h^4}{4}$
I	$M_{\rm P}^2 + \xi h^2 =$	$M_{ m P,eff}^2$ F.Bezrukov, M.Shaposhnikov (2007)
II	$M_{ m P}^2$ (constant	A.O.Barvinsky, A.Y.Kamenshchik, A.A.Starobinsky (2008)
$\mu_{\star}^2 + h^2$	$\propto M_P^2 + \xi_{\star} h^2$	
		$\xi_{\star} = M_{\rm P}^2/\mu_{\star}^2 \neq \xi$





✓ Perturbative computation of effective potential is justified.

$$\Lambda > m_t$$
 (the largest mass scale in the loops)

 \checkmark Generation of inflaton (Higgs) fluctuation is also computable.

$$\Lambda > H > k_{
m fluc}$$
 during Higgs inflation

✓ Perturbative computation of effective potential is justified.

$$\Lambda > m_t$$
 (the largest mass scale in the loops)

✓ Generation of inflaton (Higgs) fluctuation is also computable.

$$\Lambda > H > k_{
m fluc}$$
 during Higgs inflation

?? Reheating temperature becomes very high.

$$T_{
m rh} > \Lambda|_{h=0} = \mu_{\star}$$
 (zero mode vanishes after thermalization)

Thermal history after inflation (⇒ Inflationary observable) cannot be discussed.

- $egin{array}{c} 1, ext{ Theory above Λ}? \ 2, ext{ When } T_{
 m rh} < \Lambda ? \end{array}$

Critical case

$$V_{\rm eff} = \frac{h^4}{4} \left[\lambda_c + \frac{B_c}{2} \ln \frac{h^2}{\mu_c^2} + \frac{B_c'}{8} \left(\ln \frac{h^2}{\mu_c^2} \right)^2 + \cdots \right]^{\frac{3\sigma \text{ bands in}}{M_t = 173.3 \pm 0.8 \text{ GeV (gray)}}}_{0.06}$$

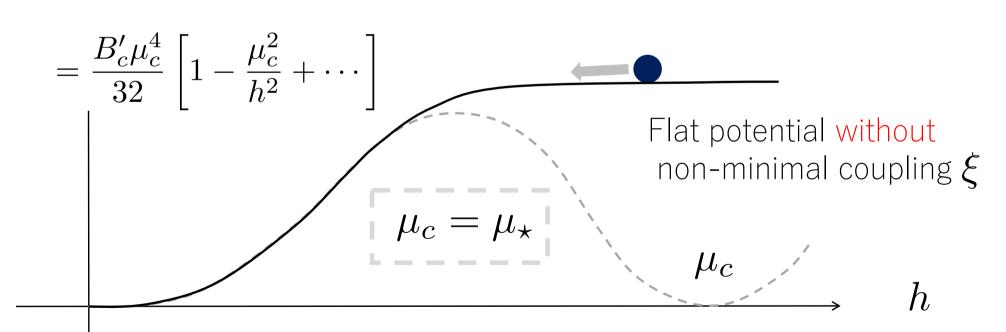
$$V \text{ with the standard renormalization prescription}$$

$$V \text{ with the standard renormalization prescription}$$

 μ_c

Critical case

$$V_{\text{eff}} = \frac{h^4}{4} \left[\lambda_c + \frac{B_c}{2} \ln \frac{h^2}{\mu_c^2 + h^2} + \frac{B_c'}{8} \left(\ln \frac{h^2}{\mu_c^2 + h^2} \right)^2 + \cdots \right]$$



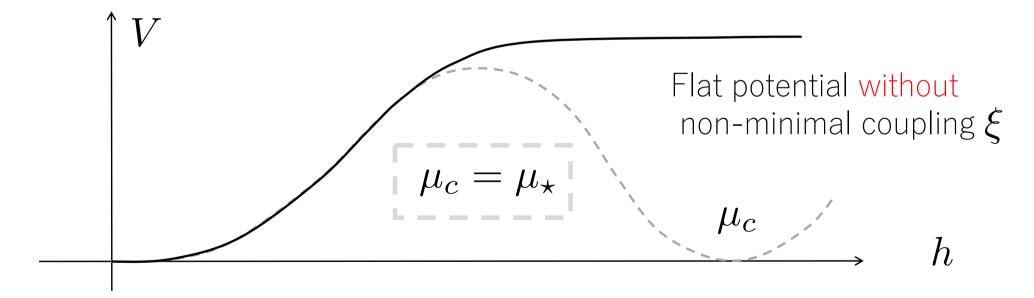
Critical case

$$\mu_c \sim 10^{17} \text{GeV} < M_P$$

$$\Rightarrow A_s \simeq 2.2 \times 10^{-9}$$

$$T_{
m rh} \lesssim V^{1/4}$$

$$< \mu_c = \Lambda|_{h=0}$$
 Perturbative computation is valid.



Future directions (DM, GW…??)

Critical case ($T_{
m rh} < \Lambda$, Asymptotic SI itself needs nothing new for cosmology.)

Any reasonable way to extend the SM??

Future directions (DM, GW…??)

Critical case ($T_{
m rh} < \Lambda$, Asymptotic SI itself needs nothing new for cosmology.)

$$n_s \approx 0.975 \implies 2\sigma$$
 level

 $n_s \approx 0.975 \implies 2\sigma$ level \implies Non-standard thermal history is preferred.

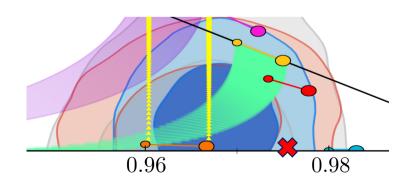
$$n_s pprox 1 - rac{3}{2N}$$
 with $N=60$

$$\Delta N \sim 15$$

Super-cooling stage before a phase transition?

Gravitational waves, DM production after PT

Typically, in scale invariant models



Future directions (DM, GW…??)

Critical case ($T_{
m rh} < \Lambda$, Asymptotic SI itself needs nothing new for cosmology.)

$$n_s \approx 0.975 \implies 2\sigma$$
 level

 $n_s \approx 0.975 \implies 2\sigma$ level \implies Non-standard thermal history is preferred.

$$n_s pprox 1 - rac{3}{2N}$$
 with $N=60$

$$\Delta N \sim 15$$

Super-cooling stage before a phase transition?

Gravitational waves, DM production after PT Typically, in scale invariant models

Theory above Λ ?

Needs to guarantee the absence of $\Lambda^2 h^2$

DM production with $T>\Lambda$ Phase transition at $\,T\sim\Lambda$

Summary

Asymptotic Scale Invariance can be responsible for our EW vacuum stability.

Perturbative computation of the effective potential is valid because tree-unitary violation scale Λ is larger than any others.

Higgs inflation is also possible.

However, $T_{
m rh} > \Lambda$ requires a theory above Λ .

 $T_{
m rh} < \Lambda$ for the critical case. The theory below Λ is enough.

Thank you