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What can we measure?

(Bolshoi simulation: Klypin+ 2011) (250 Mpc across) J. Blazek - DSU2018



What can we measure?
“geometry”
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What can we measure?

(Virgo simulations: Jenkins+ 1998)

FIG. 1.ÈProjected mass distribution at z \ 0 in slices through four CDM N-body simulations. The length of each slice is 239.5 h~1 Mpc, and the
thickness is 1/10 of this. To plot these slices, the mass distribution was Ðrst smoothed adaptively onto a Ðne grid using a variable kernel technique similar to
that used to estimate gas densities in smoothed particle hydrodynamics. At z \ 0, the general appearance of all the models is similar because, by construction,
the phases of the initial Ñuctuations are the same. On larger scales, the higher Ñuctuation amplitude in the "CDM and OCDM models is manifest in sharper
Ðlaments and larger voids compared to the SCDM and qCDM models. The two ) \ 1 models look very similar as do the two models, but, because)0 \ 0.3
of their higher normalization, the latter show more structure.

JENKINS et al. (see 499, 25)
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What can we measure?
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(Dark Energy Camera)

What can we measure?
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Observables

Credit: ESA

12 C. Chang et al.
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Figure 6. Pixel signal-to-noise (S/N) kE/s(kE ) maps (top) and kB/s(kB) maps (bottom) constructed from the METACALIBRATION catalog for galaxies in
the redshift range of 0.2 < z < 1.3, smoothed by a Gaussian filter of sG = 30 arcminutes. s(kE ) and s(kB) are estimated by Eq. (16).

the lower noise coming from the higher number density of source
galaxies. Structures that show up in a given map are likely to also
show up in the neighbouring redshift bins, since the mass that is
contributing to the lensing in one map is likely to also lens galaxies
in neighbouring redshift bins. This is apparent in e.g. the structures
at (RA, Dec)=(35�, -48�) and (58�, -55�). Next, we compare the
E-mode maps with their B-mode counterpart in Fig. 6 and Fig. 7.
In general, the B-mode maps have lower overall amplitudes. The
mean absolute S/N of the E-mode map is ⇠1.5 times larger than
the B-mode map at this smoothing scale. For a smoothing scale of
sG =80 arcminutes, this ratio increases to ⇠ 2. There are no sig-
nificant correlations between the E- and the B-mode maps in Fig. 6
and Fig. 7: we find that the Pearson correlation coefficients10 are all
consistent with zero, as expected for maps where systematic effects
are not dominant. Comparing the four tomographic B-mode maps

10 The Pearson correlation coefficient two maps X and Y is defined as
h(X � X̄)(Y � Ȳ )i/(sX sY ), where X̄ and Ȳ are the mean pixel values for
the two maps, the hi averages over all pixels in the map, and s indicates the
standard deviation of the pixel values in each map.

in Fig. 7, there is no obvious correlation between the structures in
one map with maps of neighboring redshift bins. We find that the
Pearson correlation coefficient between the second and third (third
and fourth) redshift bins for the B-mode maps is 8 (5.5) times lower
than that for the E-mode maps. The E and B-mode maps for the
lowest redshift bin 0.2 < z < 0.43 have similar levels of S/N, which
is expected since the lensing signal at low redshift is weak and the
noise level is high.

We now examine the second and third moments of the kE
maps similar to the tests in Sec. 5.2. For direct comparison with
simulations, the measurements are done using the map with the full
redshift range 0.2 < z < 1.3 and in the region of 0� <RA< 100�.
Our results are shown in the right panels of Fig. 4, where the mean
and standard deviation of the 12 noisy simulation results are also
overlaid.

We note that we do not expect perfect agreement between the
simulation and data for several reasons: first, the detailed shape
noise incorporated in the simulations is only an approximation to
the METACALIBRATION shape noise. In particular, there is no cor-
relation of the shape noise with other galaxy properties in our sim-

MNRAS 000, 000–000 (0000)
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FIG. 1. Galaxy distribution of the redMaGiC Y1 sample used in this analysis. The fluctuations represent the raw counts,
without any of the corrections derived in this analysis. We have restricted the analysis to the contiguous region shown in the
figure. The area is 1321 square degrees.

FIG. 2. Redshift distribution of the combined redMaGiC

sample in 5 redshift bins. They are calculated by stacking
Gaussian PDFs with mean equal to the redMaGiC redshift
prediction and standard deviation equal to the redMaGiC

redshift error. Each curve is normalized so that the area of
each curve matches the number of galaxies in its redshift bin.

The first is based on SExtractor MAG AUTO quantities from
the Y1 coadd catalogs, as applied to redMaPPer in
[38]. The second is based on a simultaneous multi-epoch,
multi-band, and multi-object fit (MOF) (see Section 6.3 of
Y1GOLD), as applied to redMaPPer (Mcclintock et al.
2017, in preparation). In general, due to the careful han-
dling of the point-spread function (PSF) and matched

z range Lmin/L⇤ ngal (deg
�2) Ngal Photometry

0.15 < z < 0.3 0.5 0.0134 63719 MAGAUTO
0.3 < z < 0.45 0.5 0.0344 163446 MAGAUTO
0.45 < z < 0.6 0.5 0.0511 240727 MAGAUTO
0.6 < z < 0.75 1.0 0.0303 143524 MOF
0.75 < z < 0.9 1.5 0.0089 42275 MOF

TABLE I. Details of the sample in each redshift bin. Lmin/L⇤
describes the minimum luminosity threshold of the sample,
ngal is the number of galaxies per square degree, and Ngal is
the total number of galaxies.

multi-band photometry, the MOF photometry yields lower
color scatter and hence smaller scatter in red-sequence
photo-zs. For each version of the catalog, photometric
redshifts and uncertainties are primarily derived from the
fit to the red-sequence template. In addition, an after-
burner step is applied to ensure that redMaGiC photo-
zs and errors are consistent with those derived from the
associated redMaPPer cluster catalog [13].

As described in [13], the redMaGiC algorithm com-
putes color-cuts necessary to produce a luminosity-
thresholded sample of constant co-moving density. Both
the luminosity threshold and desired density are inde-
pendently configurable, but in practice higher luminos-
ity thresholds require a lower density for good perfor-
mance. We note that in [13] the co-moving density was
computed with the central redshift of each galaxy (zRM).
For this work, the density was computed by sampling
from a Gaussian distribution zRM ± �z, which creates
a more stable distribution near filter transitions. This is

DES Year 1: Elvin-Poole+ 2017; Chang+ 2018

lensing shear/convergencegalaxy density

Gravitational lensing
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Maps and masks
• Maps built on resolution Nside = 4096, then 

masked and downgraded to 2048, the analysis 
resolution 

• Joint mask for areas of insufficient depth, as in 
Jack’s analysis 

• K map is smoothed with Gaussian of FWHM = 
5.4’: required to cut off K noise from small scales 

• ‘Fake catalogues’ also built for clustering 
measurements with treecorr (as this requires 
catalogues instead of maps) 

• Catalog item created at centre of each map 
pixel 

• Weight of each object equal to pixel value 

• Same for masks, from which fake random 
catalogues are created
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Figure 6. Pixel signal-to-noise (S/N) kE/s(kE ) maps (top) and kB/s(kB) maps (bottom) constructed from the METACALIBRATION catalog for galaxies in
the redshift range of 0.2 < z < 1.3, smoothed by a Gaussian filter of sG = 30 arcminutes. s(kE ) and s(kB) are estimated by Eq. (16).

the lower noise coming from the higher number density of source
galaxies. Structures that show up in a given map are likely to also
show up in the neighbouring redshift bins, since the mass that is
contributing to the lensing in one map is likely to also lens galaxies
in neighbouring redshift bins. This is apparent in e.g. the structures
at (RA, Dec)=(35�, -48�) and (58�, -55�). Next, we compare the
E-mode maps with their B-mode counterpart in Fig. 6 and Fig. 7.
In general, the B-mode maps have lower overall amplitudes. The
mean absolute S/N of the E-mode map is ⇠1.5 times larger than
the B-mode map at this smoothing scale. For a smoothing scale of
sG =80 arcminutes, this ratio increases to ⇠ 2. There are no sig-
nificant correlations between the E- and the B-mode maps in Fig. 6
and Fig. 7: we find that the Pearson correlation coefficients10 are all
consistent with zero, as expected for maps where systematic effects
are not dominant. Comparing the four tomographic B-mode maps

10 The Pearson correlation coefficient two maps X and Y is defined as
h(X � X̄)(Y � Ȳ )i/(sX sY ), where X̄ and Ȳ are the mean pixel values for
the two maps, the hi averages over all pixels in the map, and s indicates the
standard deviation of the pixel values in each map.

in Fig. 7, there is no obvious correlation between the structures in
one map with maps of neighboring redshift bins. We find that the
Pearson correlation coefficient between the second and third (third
and fourth) redshift bins for the B-mode maps is 8 (5.5) times lower
than that for the E-mode maps. The E and B-mode maps for the
lowest redshift bin 0.2 < z < 0.43 have similar levels of S/N, which
is expected since the lensing signal at low redshift is weak and the
noise level is high.

We now examine the second and third moments of the kE
maps similar to the tests in Sec. 5.2. For direct comparison with
simulations, the measurements are done using the map with the full
redshift range 0.2 < z < 1.3 and in the region of 0� <RA< 100�.
Our results are shown in the right panels of Fig. 4, where the mean
and standard deviation of the 12 noisy simulation results are also
overlaid.

We note that we do not expect perfect agreement between the
simulation and data for several reasons: first, the detailed shape
noise incorporated in the simulations is only an approximation to
the METACALIBRATION shape noise. In particular, there is no cor-
relation of the shape noise with other galaxy properties in our sim-

MNRAS 000, 000–000 (0000)
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Combining probes

{
“3x2”

Maps and masks
• Maps built on resolution Nside = 4096, then 

masked and downgraded to 2048, the analysis 
resolution 

• Joint mask for areas of insufficient depth, as in 
Jack’s analysis 

• K map is smoothed with Gaussian of FWHM = 
5.4’: required to cut off K noise from small scales 

• ‘Fake catalogues’ also built for clustering 
measurements with treecorr (as this requires 
catalogues instead of maps) 

• Catalog item created at centre of each map 
pixel 

• Weight of each object equal to pixel value 

• Same for masks, from which fake random 
catalogues are created
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Figure 6. Pixel signal-to-noise (S/N) kE/s(kE ) maps (top) and kB/s(kB) maps (bottom) constructed from the METACALIBRATION catalog for galaxies in
the redshift range of 0.2 < z < 1.3, smoothed by a Gaussian filter of sG = 30 arcminutes. s(kE ) and s(kB) are estimated by Eq. (16).

the lower noise coming from the higher number density of source
galaxies. Structures that show up in a given map are likely to also
show up in the neighbouring redshift bins, since the mass that is
contributing to the lensing in one map is likely to also lens galaxies
in neighbouring redshift bins. This is apparent in e.g. the structures
at (RA, Dec)=(35�, -48�) and (58�, -55�). Next, we compare the
E-mode maps with their B-mode counterpart in Fig. 6 and Fig. 7.
In general, the B-mode maps have lower overall amplitudes. The
mean absolute S/N of the E-mode map is ⇠1.5 times larger than
the B-mode map at this smoothing scale. For a smoothing scale of
sG =80 arcminutes, this ratio increases to ⇠ 2. There are no sig-
nificant correlations between the E- and the B-mode maps in Fig. 6
and Fig. 7: we find that the Pearson correlation coefficients10 are all
consistent with zero, as expected for maps where systematic effects
are not dominant. Comparing the four tomographic B-mode maps

10 The Pearson correlation coefficient two maps X and Y is defined as
h(X � X̄)(Y � Ȳ )i/(sX sY ), where X̄ and Ȳ are the mean pixel values for
the two maps, the hi averages over all pixels in the map, and s indicates the
standard deviation of the pixel values in each map.

in Fig. 7, there is no obvious correlation between the structures in
one map with maps of neighboring redshift bins. We find that the
Pearson correlation coefficient between the second and third (third
and fourth) redshift bins for the B-mode maps is 8 (5.5) times lower
than that for the E-mode maps. The E and B-mode maps for the
lowest redshift bin 0.2 < z < 0.43 have similar levels of S/N, which
is expected since the lensing signal at low redshift is weak and the
noise level is high.

We now examine the second and third moments of the kE
maps similar to the tests in Sec. 5.2. For direct comparison with
simulations, the measurements are done using the map with the full
redshift range 0.2 < z < 1.3 and in the region of 0� <RA< 100�.
Our results are shown in the right panels of Fig. 4, where the mean
and standard deviation of the 12 noisy simulation results are also
overlaid.

We note that we do not expect perfect agreement between the
simulation and data for several reasons: first, the detailed shape
noise incorporated in the simulations is only an approximation to
the METACALIBRATION shape noise. In particular, there is no cor-
relation of the shape noise with other galaxy properties in our sim-

MNRAS 000, 000–000 (0000)
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• More statistical power, different systematics, “self-calibration” 

• Also: CMB, clusters, SNe, strong lensing, RSD, 21cm…
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e.g. Mandelbaum+ 2013; Krause & Eifler 2017; DES 2017; Joudaki+ KiDS 2017
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Challenges
Measurement systematics 

• photometric redshift uncertainties 
• shear calibration and source blending 
• PSF modeling 
• details of survey selection and completeness 

Astrophysical systematics 
• galaxy/tracer formation and relationship to dark matter 

• shape/size correlations (e.g. “intrinsic alignments”) 
• biasing and peculiar velocities 

• nonlinear structure growth 
• “baryonic effects” on matter clustering

J. Blazek - DSU2018



4 Tenneti et al.

Figure 1. Top: Snapshot of the MBII simulation in a slice of thickness 2h�1Mpc at redshift z = 0.06. The bluish-white colored region
represents the density of the dark matter distribution and the red lines show the direction of the major axis of ellipse for the projected
shape defined by the stellar component. Bottom Left: Dark matter (shown in gray) and stellar matter (shown in red) distribution in the
most massive group at z = 0.06 of mass 7.2 ⇥ 1014h�1M�. The blue and red ellipses show the projected shapes of dark matter and
stellar matter of subhalos respectively. Bottom Middle: Dark matter and stellar matter distribution in a group of mass 3.8⇥1012h�1M�.
Bottom Right: Dark matter and stellar matter distribution in a group of mass 1.1⇥ 1012h�1M�.
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shapes in the N -body simulation by considering only parti-
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tensor definition for determining shapes and defer investiga-
tion of other definitions for a future study.
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tia tensor be êa, êb, êc and the corresponding eigenvalues be
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Figure 1. Top: Snapshot of the MBII simulation in a slice of thickness 2h�1Mpc at redshift z = 0.06. The bluish-white colored region
represents the density of the dark matter distribution and the red lines show the direction of the major axis of ellipse for the projected
shape defined by the stellar component. Bottom Left: Dark matter (shown in gray) and stellar matter (shown in red) distribution in the
most massive group at z = 0.06 of mass 7.2 ⇥ 1014h�1M�. The blue and red ellipses show the projected shapes of dark matter and
stellar matter of subhalos respectively. Bottom Middle: Dark matter and stellar matter distribution in a group of mass 3.8⇥1012h�1M�.
Bottom Right: Dark matter and stellar matter distribution in a group of mass 1.1⇥ 1012h�1M�.
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Figure 1. Top: Snapshot of the MBII simulation in a slice of thickness 2h�1Mpc at redshift z = 0.06. The bluish-white colored region
represents the density of the dark matter distribution and the red lines show the direction of the major axis of ellipse for the projected
shape defined by the stellar component. Bottom Left: Dark matter (shown in gray) and stellar matter (shown in red) distribution in the
most massive group at z = 0.06 of mass 7.2 ⇥ 1014h�1M�. The blue and red ellipses show the projected shapes of dark matter and
stellar matter of subhalos respectively. Bottom Middle: Dark matter and stellar matter distribution in a group of mass 3.8⇥1012h�1M�.
Bottom Right: Dark matter and stellar matter distribution in a group of mass 1.1⇥ 1012h�1M�.
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Figure 1. Top: Snapshot of the MBII simulation in a slice of thickness 2h�1Mpc at redshift z = 0.06. The bluish-white colored region
represents the density of the dark matter distribution and the red lines show the direction of the major axis of ellipse for the projected
shape defined by the stellar component. Bottom Left: Dark matter (shown in gray) and stellar matter (shown in red) distribution in the
most massive group at z = 0.06 of mass 7.2 ⇥ 1014h�1M�. The blue and red ellipses show the projected shapes of dark matter and
stellar matter of subhalos respectively. Bottom Middle: Dark matter and stellar matter distribution in a group of mass 3.8⇥1012h�1M�.
Bottom Right: Dark matter and stellar matter distribution in a group of mass 1.1⇥ 1012h�1M�.
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xni, xnj represent the position coordinates of the nth parti-
cle with 0 6 i, j 6 2 for 3D and 0 6 i, j 6 1 for 2D. It is to be
noted that in this simulation, all particles of the given type
(either dark matter or star particle) have the same mass.
Hence the mass of a particle has no e↵ect on the inertia ten-
sor. The inertia tensor can also be defined by weighting the
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Schneider et al. (2012) used the definition of reduced iner-
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shapes in the N -body simulation by considering only parti-
cles within a given fraction of the virial radius. In this paper,
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tensor definition for determining shapes and defer investiga-
tion of other definitions for a future study.
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Figure 1. Top: Snapshot of the MBII simulation in a slice of thickness 2h�1Mpc at redshift z = 0.06. The bluish-white colored region
represents the density of the dark matter distribution and the red lines show the direction of the major axis of ellipse for the projected
shape defined by the stellar component. Bottom Left: Dark matter (shown in gray) and stellar matter (shown in red) distribution in the
most massive group at z = 0.06 of mass 7.2 ⇥ 1014h�1M�. The blue and red ellipses show the projected shapes of dark matter and
stellar matter of subhalos respectively. Bottom Middle: Dark matter and stellar matter distribution in a group of mass 3.8⇥1012h�1M�.
Bottom Right: Dark matter and stellar matter distribution in a group of mass 1.1⇥ 1012h�1M�.
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xni, xnj represent the position coordinates of the nth parti-
cle with 0 6 i, j 6 2 for 3D and 0 6 i, j 6 1 for 2D. It is to be
noted that in this simulation, all particles of the given type
(either dark matter or star particle) have the same mass.
Hence the mass of a particle has no e↵ect on the inertia ten-
sor. The inertia tensor can also be defined by weighting the
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tia tensor and investigated the radial dependance of halo
shapes in the N -body simulation by considering only parti-
cles within a given fraction of the virial radius. In this paper,
we are only concerned with the standard unweighted inertia
tensor definition for determining shapes and defer investiga-
tion of other definitions for a future study.
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Why go beyond linear theory?
CosmoLike 9

3x2pt Rmin=10 Mpc/h
3x2pt Rmin=20 Mpc/h

3x2pt Rmin=50 Mpc/h
3x2pt Rmin=0.1 Mpc/h, HOD
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w a
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3x2pt+cluster Rmin=10 Mpc/h
3x2pt+cluster Rmin=0.1 Mpc/h, HOD
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Figure 4. Left: Varying the minimum scale included in galaxy clustering and galaxy galaxy lensing measurements. We show the baseline 3x2pt functions,
which assumes Rmin = 10Mpc/h (black/solid), and corresponding constraints when using Rmin = 20Mpc/h (red/dashed), Rmin = 50Mpc/h (blue/dot-dashed),
Rmin = 0.1Mpc/h (green/long-dashed) instead. For the latter we switch from linear galaxy bias modeling to our HOD implementation. Right: Information gain
when using HOD instead of linear galaxy bias for 3x2pt (black solid vs dashed contours) in comparison to corresponding information gain when including
cluster number counts and cluster weak lensing in the data vector (violett/dot-dashed vs long-dashed).

cov fiducial cosmology

cov cosmology model 1
cov cosmology model2

wp

w
a

Figure 5. Change in cosmological constraints when varying the underlying
cosmological model in the covariance matrix. We show three scenarios: 1)
the fiducial cosmology (black/solid), 2) fiducial cosmology but a 10% lower
value in �8 and ⌦m (red/dashed), and 3) fiducial cosmology but changes in
the dark energy parameters, i.e. w0 =�1.3 and wa =�0.5 (blue/dot-dashed).
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(26)

with z= z(�). The j dependent term is the normalized distribution of
source galaxies in redshift bin j, fred is the fraction of red galaxies
which is evaluated as a function of limiting magnitude mlim = 27,
and P�I the cross power spectrum between intrinsic galaxy orienta-
tion and matter density contrast.

The IA contamination of our data vector assumes a DEEP2
luminosity function (Faber et al. 2007) and the tidal alignment sce-
nario described in Blazek et al. (2015); Krause et al. (2016). The

tidal alignment scenario is in good agreement with observations;
using the DEEP2 luminosity function should be considered as an
upper limit of the strength of IA contaminations.

In Fig. 6 we compare the baseline analysis for cosmic shear
and 3x2pt (no IA contamination) to the case where IA contami-
nates the data vectors. In the latter case we marginalize over 10
nuisance parameters (4 for IA and 6 for luminosity function uncer-
tainties, see Krause et al. 2016, for details) to account for the IA
contamination. Although we assume the tidal alignment scenario
as a contaminant, we choose a di↵erent IA model for the marginal-
ization (non-linear alignment with the Halofit fitting formula) to
mimic a realistic analysis.

We find that in the presence of multiple probes, photo-z, shear
calibration and galaxy bias uncertainties, the assumption of an im-
perfect IA model in the marginalization is negligible. As expected
when including 10 more dimensions in the analysis the constraints
weaken but again the e↵ect is not severe. Note that the 3x2pt data
vector only includes galaxy-galaxy lensing tomography bins for
which the photometric source redshifts are behind the lens galaxy
redshift bin. Hence only a small fraction of source galaxies in
the low-z tail of the redshift distribution contribute an IA signal
to galaxy-galaxy lensing. As a consequence the 3x2pt data vector
contains only marginally more information on IA, and improve-
ments in the self-calibration of IA parameters is largely due to the
enhanced constraining power on parameters which are degenerate
with IA.

5 Discussion

The first step in designing a multi-probe likelihood analysis is to
specify the exact details of the data vector. This is far from trivial;
the optimal data vector is subject to various considerations.

• Science case This paper focusses on time-dependent dark en-
ergy as a science case with the fiducial model being ⇤CDM. If
there was indication for time-dependence, the data vector can be
optimized (tomography bins, galaxy samples, scales) such that it is
most sensitive to these signatures. The same holds when extending

MNRAS 000, 1–13 (2014)

LSST-like forecast: Krause & Eifler 2017
J. Blazek - DSU2018



• cosmological quantities directly connect to underlying model 
• effective parameters receive contributions from small scales 
• new probes of large-scale structure and fundamental physics

Unified description in effective 
perturbative expansions

galaxy bias (McDonald & Roy 2009; Assassi+ 2014; Angulo+ 2015; Desjacques, Jeong, Schmidt 2016)

galaxy intrinsic alignments 
(JB+ 2015; Schmidt+ 2015; JB+ 2017 arXiv:1708.09247; Schmitz, Hirata, JB, Krause 2018 arXiv:1805.02649)
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(51)
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P0E|0E(k) =

∫

d3q1
(2π)3

[(

3− 14µ2
q + 19µ4

q

8

)

Plin(q1) [Plin(q2)− 2Plin(q1)]

+

(

8αµq(3µ2
q − 1) + 4(−1 + 3µ2

q) + α2(3− 14µ2
q + 19µ4

q)

8(1 + α2 − 2αµq)

)

Plin(q1)Plin(q2)

]

P0B|0B(k) =

∫

d3q1
(2π)3

[

(

2µ2
q(1− µ2

q)
)

Plin(q1)

(

Plin(q2)− 2Plin(q1)

)

+

(

2αµq(µq − 1)(1− αµq)

k2 + q2 − 2kqµq

)

Plin(q1)Plin(q2)

]

δg(x) = bδm(x)

δg(x) = F [δm(x), δm(y), ...]

δg(x) = F [δm(x)] ≈ b1δm(x) + b2δ
2
m(x) + · · ·

δg(x) = b1δm(x) + b2δ
2
m(x) + bss

2(x) + · · ·

vbc, δbc, θbc (64)

γI
ij(x) =C1sij(x) + C2sik(x)skj(x)+

C1δδ(x)sij(x) + C2δδ(x)sik(x)skj(x) + · · ·

F (k) =

∫

d3q1

(2π)3
Plin(q1)Plin(q2)K(q1,q2) (65)

Plin, PNL (66)

PII(k, z), PGI(k, z) (67)
∫

d3k (P × P ) (68)

→ A(k), B(k), . . . (69)

Ci, z, L, fred, . . . (70)
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Power law and FFT methods 
McEwen, Fang, Hirata, JB 2016; Fang, JB, McEwen, Hirata 2017 

see also: Schmittfull, Vlah, McDonald 2016; Schmittfull & Vlah 2016; Simonovic+ 2017 
FAST-PT on github: JoeMcEwen/FAST-PT

1 Introduction

Observational cosmology has entered a new era of precision measurement. Current and up-
coming surveys [1–5] are enabling us to probe large-scale structure in more detail and over
larger volumes, and hence to better constrain the underlying cosmological model. A parallel
effort is underway to understand the astrophysical effects that are both signals and contami-
nants in these measurements. For example, weak gravitational lensing has become a powerful
and direct probe of the dark matter distribution [6, 7], but it also suffers from systematic
uncertainties, such as galaxy intrinsic alignments (IA), which must be mitigated in order
to make use of high-precision measurements. Similarly, connecting observable tracers (e.g.
in spectroscopic surveys) with the underlying dark matter requires a description of the bias
relationship [8–12] and the effect of redshift-space distortions (RSDs) [13–15]. Developments
in CMB measurements provide another illustration, as the range of observables has expanded
from early initial detections of temperature anisotropies by COBE [16–24]. Current and fu-
ture measurements [25–30] will be able to investigate more subtle effects, such as the kinetic
Sunyaev-Zel’dovich (kSZ) [31, 32] and CMB spectral distortions [33, 34].

While modern cosmology has advanced significantly using our understanding from linear
perturbation theory, nonlinear contributions become significant at late times and at smaller
scales. In the quasi-linear regime, many relevant cosmological observables are usefully de-
scribed using perturbation theory at higher order. Significant effort has been devoted to
understanding structure formation via a range of perturbative techniques (e.g. [35–45]). In
this work, we consider integrals in standard perturbation theory (SPT), although the methods
and code we develop have a broader range of applications.

The next-to-leading-order (“1-loop”) corrections in these perturbative expansions are typ-
ically expressed as two-dimensional mode-coupling convolution integrals, which are generically
time consuming to evaluate numerically. Recent algorithmic developments have dramatically
sped up these computations for scalar quantities – those with no dependence on the direction
of the observer, such as the matter density or real-space galaxy density. The new algorithms
[46, 47] take advantage of the locality of evolution in perturbation theory, the scale invariance
of cold dark matter (CDM) structure formation, and the Fast Fourier Transform (FFT); and
work is underway to apply them to 2-loop power spectra as well [48]. In a previous paper, we
introduced the FAST-PT implementation of these methods in Python [46].

However, there are many interesting 1-loop convolution integrals for tensor quantities –
those with explicit dependence on the observer line of sight, such as those arising for redshift-
space distortions. In this case, we need convolution integrals with “tensor” kernels:1

I(k) =

Z
d
3q1

(2⇡)3
K(q̂1 · q̂2, q̂1 · k̂, q̂2 · k̂, q1, q2)P (q1)P (q2) , (1.1)

where K(q̂1 · q̂2, q̂1 · k̂, q̂2 · k̂, q1, q2) is a tensor mode-coupling kernel, k = q1 + q2, k = |k|,
and P (q) is the input signal – typically the linear matter power spectrum – logarithmically
sampled in q. Due to the dependence on the direction of k, the decomposition of these kernels
is more complicated than in the scalar case. In this work, we generalize our FAST-PT algorithm

1The kernel K can be expressed as a sum of polynomials in the relevant dot products. “Tensor” refers
to the general transformation properties of the cosmological quantities being considered under a symmetry
operation – in this case, rotations in SO(3). For instance, the momentum density is a rank 1 tensor (a vector)
while the IA field is a rank 2 tensor. The scalar case (rank 0) considered in [46] is thus a specific application
of this more general framework.
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to evaluate these tensor convolution integrals, achieving O(N log N) performance as in the
scalar case.

This paper is organized as follows: in §2 we provide the mathematical basis for our
method (§2.1), introduce our algorithm (§2.2), and discuss divergences that may arise and
how they are resolved (§2.3). In section §3 we apply our method to several examples: the
quadratic intrinsic alignment model (§3.1); the Ostriker-Vishniac effect (§3.2); the kinetic
polarization of CMB (§3.3); and the 1-loop redshift-space power spectrum (§3.4). Section
§4 summarizes the results. An appendix contains derivations of the relevant mathematical
identities. The Python code implementing this algorithm and the examples presented in this
paper is publicly available at https://github.com/JoeMcEwen/FAST-PT.

2 Method

In this section we extend the FAST-PT framework to include the computation of convolution
integrals with tensor kernels in the form of Eq. (1.1)

Our approach is similar to the scalar version of FAST-PT. We first expand the kernel into
several Legendre polynomial products – the explicit dependence on the direction k̂ requires
an expansion in three angles rather than one. Second, products of Legendre polynomials are
written in spherical harmonics using the addition theorem, where the required combinations of
spherical harmonics are constrained by Wigner 3j symbols and preserve angular momentum.
Third, the integral of each term in the expansion can be further transformed into a product
of several one-dimensional integrals in configuration space, which can be quickly performed
by assuming a (biased) log-periodic power spectrum and employing FFTs.

We will first provide the theory in §2.1 and then briefly introduce our algorithm in §2.2.
Finally, in §2.3 we will discuss physical divergence problems that can arise and the way to
solve them through the choice of appropriate biasing of the log-periodic power spectrum.

2.1 Transformation To 1D Integrals

In general, the kernel function K can be decomposed as a summation of terms

K(q̂1 · q̂2, q̂1 · k̂, q̂2 · k̂, q1, q2) =
X

`1,`2,`,↵,�

A
↵�
`1`2`

P`(q̂1 · q̂2)P`1(k̂ · q̂2)P`2(k̂ · q̂1)q
↵
1 q

�
2 , (2.1)

where P` are the Legendre polynomials, and the A
↵�
`1`2`

coefficients specify the components
of a particular kernel. For general angular dependences the sum may require an infinite
number of terms. However the kernels that appear in CDM perturbation theory and galaxy
biasing theory are composed of a finite number of terms in a polynomial expansion. This
decomposition leads us to consider integrals of the form

f(k) =

Z
d
3q1

(2⇡)3
P`(q̂1 · q̂2)P`1(k̂ · q̂2)P`2(k̂ · q̂1)q

↵
1 q

�
2P (q1)P (q2) . (2.2)

The product of Legendre polynomials can be decomposed into spherical harmonics by
the addition theorem. Using the result presented in Appendix B.1, we can write the product
of three Legendre polynomials in terms of spherical harmonics and Wigner 3j symbols:

P`(q̂1 · q̂2)P`2(q̂1 · k̂)P`1(q̂2 · k̂)

=
X

J1,J2,Jk

C
J1J2Jk
`1`2`

X

M1,M2,Mk

YJ1M1
(q̂1)YJ2M2

(q̂2)YJkMk
(k̂)

✓
J1 J2 Jk

M1 M2 Mk

◆
, (2.3)
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where

aJ1J2Jk
⌘

s
(2J1 + 1)(2J2 + 1)

4⇡(2Jk + 1)

✓
J1 J2 Jk

0 0 0

◆
. (2.11)

The derivation of Eqs. (2.10) and (2.11) is provided in Appendix (B.2). Fourier transforming
back to k-space, we obtain

T
↵�
J1J2JkMk

(k) =

Z
d
3
rT

↵�
J1J2JkMk

(r)e�ik·r

=aJ1J2Jk

Z
r
2
drH̄

↵�
J1J2

(r)

Z
d
2r̂Y

⇤
JkMk

(r̂)e�ik·r

=aJ1J2Jk

Z
r
2
drH̄

↵�
J1J2

(r)

Z
d
2r̂Y

⇤
JkMk

(r̂)4⇡

X

`0m0

(�i)`
0
j`0(kr)Y ⇤

`0m0(k̂)Y`0m0(r̂)

=aJ1J2Jk

Z
r
2
drH̄

↵�
J1J2

(r)4⇡

X

`0m0

(�i)`
0
j`0(kr)Y ⇤

`0m0(k̂)�`0Jk�m0Mk

=4⇡(�i)JkaJ1J2Jk

Z
r
2
drH̄

↵�
J1J2

(r)jJk(kr)Y ⇤
JkMk

(k̂) , (2.12)

where in the third equality we have used the plane wave expansion (Eq. A.5), and in the fourth
equality used the orthogonality relation between spherical harmonics (Eq. A.3). Combining
the results from Eq. (2.9), (2.12), (2.11), we arrive at

I
↵�
J1J2Jk

(k) = 4⇡(�i)JkaJ1J2Jk

Z
r
2
drH̄

↵�
J1J2

(r)jJk(kr)
X

Mk

YJkMk
(k̂)Y ⇤

JkMk
(k̂)

= (�i)Jk(2Jk + 1)aJ1J2Jk

Z
r
2
drH̄

↵�
J1J2

(r)jJk(kr)

= (�1)Jk+(J1+J2+Jk)/2

r
(2J1 + 1)(2J2 + 1)(2Jk + 1)

64⇡9

✓
J1 J2 Jk

0 0 0

◆

⇥

Z
r
2
drJ

↵�
J1J2

(r)jJk(kr) , (2.13)

where J1 + J2 + Jk must be even for the 3j symbol to be non-zero, and J
↵�
J1J2

(r) is defined by

J
↵�
J1J2

(r) ⌘

Z 1

0
dq1 q

2+↵
1 P (q1)jJ1(q1r)

� Z 1

0
dq2 q

2+�
2 P (q2)jJ2(q2r)

�
. (2.14)

Combining Eq. (2.13) and (2.3) we can rewrite the integral (2.2) as

Z
d
3q1

(2⇡)3
P`(q̂1 · q̂2)P`1(k̂ · q̂2)P`2(k̂ · q̂1)q

↵
1 q

�
2P (q1)P (q2)

=
X

J1,J2,Jk

C
J1J2Jk
`1`2`

I
↵�
J1J2Jk

(k) =
X

J1,J2,Jk

B
J1J2Jk
`1`2`

Z
r
2
drJ

↵�
J1J2

(r)jJk(kr) , (2.15)
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For 1-loop calculations: 1000 k values in ~0.1s

(e.g. FFTLog: Talman 1978, Hamilton 2000)
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Dark Energy Survey
• DECam on Blanco 

Telescope, Cerro Tololo, 
Chile 

• 5000 sq degrees 

• 5 year mission 
525 nights (+extension) 

• 300 million galaxies         
(0 < z < 2) 

• overlap with SPT and ACT

2.2 deg
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Survey Progress

DES 
Year 5  

5000 deg2 

DES 
Year 1  

1300 deg2
KiDS-450

DES-SV

Results in 
Aug 2017 
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taking 
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DES Year 1 cosmology papers

  

• Galaxy catalog & reduction 

• The Y1 shear catalogs 

• Cross-correlation redshifts methodology 

• Cross-correlation redshifts on Y1 data 

• Source redshifts 

• redMaGiC redshifts 

• Galaxy-galaxy lensing 

• Cosmic shear 

• Galaxy clustering 

• Mass mapping 

• Key Project methodology & covariances 

• Key Project on simulations 

• Key Project Results 

• Key Project with CMB lensing



DES Year 1 Results 
DES Collaboration 2017

20

FIG. 9. 68% confidence levels on three cosmological parameters from the joint DES Y1 probes and other experiments for wCDM.

0.24 0.30 0.36 0.42

�m
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S
8

DES Y1
Planck

DES Y1 + Planck

FIG. 10. ⇤CDM constraints from the three combined probes in DES
Y1 (blue), Planck with no lensing (green), and their combination
(red). The agreement between DES and Planck can be quantified via
the Bayes factor, which indicates that in the full, multi-dimensional
parameter space, the two data sets are consistent (see text).

case, we find R = 2.4, which again indicates that there is no
evidence for inconsistency between the datasets.

We therefore combine the two data sets, resulting in the red
contours in Figure 10. This quantitative conclusion that the
high– and low– redshift data sets are consistent can even be
gleaned by viewing Figure 10 in a slightly different way: if
the true parameters lie within the red contours, it is not un-
likely for two independent experiments to return the blue and
green contour regions.

FIG. 11. ⇤CDM constraints from high redshift (Planck,
without lensing) and multiple low redshift experiments (DES
Y1+BAO+JLA), see text for references.

Figure 11 takes the high-z vs. low-z comparison a step fur-

4 The Dark Energy Survey and the South Pole Telescope Collaborations

Prior or Data Set Citation

DV(z = 0.106)/rs = 3.047± 0.137 Beutler et al. (2011)
DV(z = 0.15)/rs = 4.480 ± 0.168 Ross et al. (2015)
DM(z = 0.38)rs,fid/rs = 1512 ± 24 Mpc Alam et al. (2017b)
DM(z = 0.51)rs,fid/rs = 1975 ± 30 Mpc Alam et al. (2017b)
DM(z = 0.61)rs,fid/rs = 2307 ± 37 Mpc Alam et al. (2017b)
H(z = 0.38)rs/rs,fid = 81.2± 2.4 km/s/Mpc Alam et al. (2017b)
H(z = 0.51)rs/rs,fid = 90.9± 2.4 km/s/Mpc Alam et al. (2017b)
H(z = 0.61)rs/rs,fid = 99.0± 2.5 km/s/Mpc Alam et al. (2017b)

100Ωbh
2 = 2.208 ± 0.052 Cooke et al. (2016)

TCMB = 2.7255 ± 0.0006 K Fixsen (2009)

redMaGiC clustering Elvin-Poole et al. (2017)
redMaGiC shear profiles Prat et al. (2017)
Cosmic shear Troxel et al. (2017b)

Table 1. BAO and BBN priors, and DES data sets used in this analysis. The BOSS BAO priors report the comoving angular distance
and Hubble expansion relative to a fiducial sound horizon rs,fid = 147.78 Mpc. In practice, our analysis uses the full covariance matrix for
the BAO measurements quoted above as reported in Alam et al. (2017a) Table 8. The parameter DV(z) is defined via ≡ [D2

McH−1]1/3.

and compute the probability to exceed the observed value
assuming the number of degrees of freedom is equal to
the number of shared parameters. In the above expression,
Ctot = CA + CB is the expected variance of the random
variable pA−pB, with CA and CB being the covariance ma-
trix of the shared cosmological parameters. Both matrices
are marginalized over any additional parameters exclusive
to each data set. We evaluate the Probability-To-Exceed
(PTE) Pχ2 of the recovered χ2 value, and turn it into a
Gaussian-σ using the equation

Pχ2 = erf

(

No. of σ√
2

)

(2)

With this definition, a probability of 1− Pχ2 = 68% (95%)
corresponds to 1σ (2σ) difference. As a reminder, we have
adopted 3σ difference (PTE=0.27%) as our threshold for
“evidence of tension,” and 5σ (PTE = 5.96 × 10−7) as
“definitive evidence of tension.”

Figure 1 shows the Ωm–h degeneracy from the
BAO+BBN data (blue and purple ellipses). Also shown are
the corresponding constraints achieved by the DES Y1 anal-
ysis (solid curves). The two are consistent with each other at
0.6σ. A joint analysis of these data sets (yellow and orange
ellipses) results in

h = 0.672+0.012
−0.010 . (3)

Throughout, we quote the most likely h value, and the error
bars are set by the 68% contour of the posterior. This result
is in excellent agreement with and has similar precision to
that of A17 (h = 0.674 ± 0.013) obtained from combining
our same BAO+BBN data set with BAO measurements in
the Ly-α.

We compare our posterior on H0 to constraints derived
from four fully independent datasets. These are:

• Planck measurements of CMB anisotropies as probed
by the temperature-temperature (TT ) and low-l polar-
ization power spectra. The Planck TT+lowP data con-
strains h when adopting a flat ΛCDM cosmology with

Figure 1. Constraints in the Ωm–h plane from the DES and
BAO+BBN data as labeled. We have adopted a definition in
which Ωm includes the contribution from massive neutrinos. All
inner and outer contours enclose 68% and 95% of the posterior
respectively. Solid black lines show the DES Ωm–h degeneracy,
while the blue and purple contours show the BAO+BBN degen-
eracy. The DES+BAO+BBN contours are shown in yellow and
orange. For reference, we have also included the corresponding
contours for the Planck TT+lowP data set (see text).

minimal neutrino mass. Planck finds h = 0.673 ± 0.010
(Planck Collaboration 2015).

• SPTpol has measured anisotropies in the CMB via the
TE and EE angular power spectra (Henning et al. 2017). In
our fiducial cosmological model, they find h = 0.712±0.021.

• The SH0ES collaboration constrains the Hubble param-
eter by using type-Ia supernovae as standard candles. They
find h = 0.732 ± 0.017 (Riess et al. 2016).

• The H0LiCOW collaboration constrains the Hubble pa-

c⃝ 0000 RAS, MNRAS 000, 000–000

SH0ES 2018
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FIG. 8. Constraints on the three cosmological parameters �8, ⌦m, and w in wCDM from DES Y1 after marginalizing over four other
cosmological parameters and ten (cosmic shear only) or 20 (other sets of probes) nuisance parameters. The constraints from cosmic shear only
(green); w(✓) + �t(✓) (red); and all three two-point functions (blue) are shown. Here and below, outlying panels show the marginalized 1D
posteriors and the corresponding 68% confidence regions.

VII. COMPARISON WITH EXTERNAL DATA

We next explore the cosmological implications of com-
parison and combination of DES Y1 results with other ex-
periments’ constraints. For the CMB, we take constraints
from Planck [53]. In the first subsection below, we use only
the temperature and polarization auto- and cross-spectra from
Planck, omitting the information due to lensing of the CMB
that is contained in the four-point function. The latter de-
pends on structure and distances at late times, and we wish in
this subsection to segregate late-time information from early-
Universe observables. We use the joint TT, EE, BB and TE
likelihood for multipoles ` between 2 and 29 and the TT like-
lihood for ` between 30 and 2508 (commonly referred to as

TT+lowP), provided by Planck.7 In all cases that we have
checked, use of WMAP [141] data yields constraints consis-
tent with, but weaker than, those obtained with Planck. Recent
results from the South Pole Telescope [142] favor a value of
�8 that is 2.6-� lower than Planck, but we have not yet tried
to incorporate these results.

We use measured angular diameter distances from the
Baryon Acoustic Oscillation (BAO) feature by the 6dF Galaxy
Survey [143], the SDSS Data Release 7 Main Galaxy Sam-
ple [144], and BOSS Data Release 12 [50], in each case ex-
tracting only the BAO constraints. These BAO distances are
all measured relative to the physical BAO scale correspond-
ing to the sound horizon distance rd; therefore, dependence

7 Late-universe lensing does smooth the CMB power spectra slightly, so
these data sets are not completely independent of low redshift information.



Probing IA with DES 
Samuroff, JB + DES Collaboration, in prep.

12 Names

Figure 7. Joint constraints on cosmology and a single NLA model intrinsic alignment amplitude from subpopulations of the DES Y1 fiducial shear catalogue.
The two sets of confidence contours are defined by a split according to best-fitting SED, roughly corresponding to early (red) and late (blue) type galaxies.

Figure 8. The impact of colour leakage on our fiducial results. The dashed
red and dot-dashed blue lines show the baseline �� and �� + �g� + �g�g
NLA results for the early-type sample. These are identical to the red dashed
and solid lines in Figure 7. The filled pink (dotted) and purple (solid) con-
tours show the equivalent constraints in this parameter space when all two-
point correlations involving the lowest lensing reshift bin, which was found
to exhibit potentially strong galaxy type cross-contamination, are excluded.

Our final test in this section is designed to test the importance
of potential colour leakage seen in earlier sections of this paper.
This leakage is seen to affect the lowest tomographic bin of the
early-type sample more strongly than any other redshift/type bin.
We thus rerun the early-type �� and �� + �g� + �g�g chains with
additional cuts to remove correlations involving the lowest shear
bin. The result is shown in Fig. 8. Our results do not suggest signif-
icant bias in our IA constraints due to type-leakage.

5.2 Alternative Colour Definitions

Though splitting by TBPZ is a relatively common and computation-
ally inexpensive method for imposing a morphology split, it is not
trivial that this will be possible. An alternative approach is to sim-
ply identify a green valley like division in colour magnitude space,

Figure 9. Joint cosmology/IA constraints using galaxy samples split by
photometric colour. The split is implemented independently in each red-
shift bin using eq. 16 and is designed to approximate the evolution of the
green valley bimodality in colour-magnitude space.

and impose a corresponding cut. Since a photometric survey such
as DES has neither galaxy spectra nor high-quality rest-frame mag-
nitudes, the shape of the histogram in colour-magnitude space will
vary as a function of redshift. We thus inspect the colour-magnitude
diagram in each redshift bin, and derive an independent cut in each
case.

This split defines two new samples, red and blue, for which we
recompute two point correlations, covariance matrices, photomet-
ric redshift distributions and our priors on redshift error. The basic
properties of these samples are shown in Table 2. The constraints
from this alternative split sample are shown in Figure 9.

Though the early-type and late-type samples do not map ex-
actly onto the red and blue populations, our results here are very
similar to those in the fiducial analysis. The most notable differ-
ence is a slight downwards shift in the favoured amplitude AIA for
the red sample compared with early-types.

MNRAS 000, 000–000 (0000)
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Beyond systematics
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PGI(k) ∼ −C1Pδδ(k) (31)

PII(k) ∼ C2
1Pδδ(k) (32)

PGI(k, z) ∼ −A(z, L)Pδδ(k, z) (33)

PII(k, z) ∼ A2(z, L)Pδδ(k, z) (34)

δg = b1δ + b2δ
2 + · · · (35)

γI = C1s+ C2s
2 + · · · (36)

δg = b1δ + b2δ
2 + bss

2 + · · · (37)

γI = C1s+ C2(s× s) + Cδ(δs) + · · · (38)

δg = b1δ + b2δ
2 + bss

2 + bvv
2
s + · · · (39)

γI = C1s+ C2(s× s) + Cδ(δs) + · · · (40)

δg = b1δ + b2δ
2 + bss

2 + · · · (41)

γI
ij = C1sij + C2(sikskj) + Cδ(δsij) + · · · (42)

γI
ij = C1sij + C2(sikskj) + Cδ(δsij) + Cttij + · · · (43)

(44)

⟨δg|δg⟩ (45)

⟨δg|γ⟩ (46)

⟨γ|γ⟩ (47)

⟨δg|δg⟩ ∼ wgg (48)

⟨δg|γ+⟩ ∼ wg+ (GI) (49)

⟨γ+|γ+⟩ ∼ w++ (II) (50)

(51)

formation

observation

•  Probe of LSS 
•  Test inflation (e.g. Schmidt+ 2015) 
•  Modified gravity, LIV dark matter, preferred frame 
•  Galaxy formation and evolution

Figure 4. The evolution of ct with z for varying values of zIA from 2 to 8, assuming that ct(zIA) = 0
and that IA passively evolves. The black dashed lines are located at z = 0.49 and z = 0.771, the
effective redshifts of the combined BOSS sample and the DESI LRG sample, respectively.

i.e., triangles near the plane of the sky5, so that the plane-of-sky approximation k ⊥ êz is
valid. We assume a known cosmology and forecast the measurement precision on the IA
parameters alone. The derivation of the analytic expression for the Fisher information is
presented in Appendix D. We find that the matrix element Imn is given by

Imn =
V f△
8π4

∫

k1<k2

k1 k2 k3
∂

∂cm
B(k1,k2,−(k1 + k2))

∂

∂cn
B(k1,k2,−(k1 + k2))

×
(

b1(z)
2D(z)2P lin(k1) +

1

n̄

)−1(

b1(z)
2D(z)2P lin(k2) +

1

n̄

)−1

×

(

cs(z)
2D(z)2(1 + z)2fEB(k

α
3 )

2P lin(kα3 ) +
σ2γ
n̄

)

dk1 dk2 dk3. (4.1)

4.1 SDSS-BOSS

We can now numerically evaluate the Fisher information matrix using survey parameters
from SDSS-BOSS DR12 [77] as in Section 3. As mentioned in Section 3, the survey consists
of two subsamples, CMASS (Ngal = 777202, Veff = 1.70 (Gpc/h)3, zeff = 0.57), and LOWZ

5We have chosen the value θ = π/6 such that a given galaxy is subject to an inclination correction of no
greater than 1− cos2 θ = 0.25.
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(Schmitz, Hirata, JB, Krause 2018)
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Summary
• Improved modeling of observables needed for optimal multi-

probe cosmological analyses. 

• Effective perturbative expansions can be applied to galaxy 
biasing and IA, providing systematics control and novel 
probes of fundamental physics. 

• Can we introduce parameters without losing too much 
information? Informative priors from sims or observations? 

• DES Y1 results demonstrate methods - we are learning! Y3 
analyses underway. We are preparing for the next-generation 
of surveys (LSST, Euclid, DESI, WFIRST, …).
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