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*The LUX detector

*Spin-dependent and spin-
independent WIMP interaction
- full exposure.

* New calibrations
o 14C yields
o Pulse shape discrimination

* New rare searches results
o Axions and Axion-like-particles
o ER annual and diurnal modulation
oSub-GeV DM searches

* The LZ detector
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Image: LUX inside the water
tank (September 2012)



LUX Time Projection Chamber 3

*LUX is a liquid/gas time projecting

chamber (TPC): t -
0 370 kg of liquid LXe - 250 kg in the
active region (~47 cm height, ~249 cm).
*Energy depositions produce light
and charge: .
ignal Light = Prompt Particle_ i ndcals dot
°S1 signal Lig P article I
scintillation ( a
. . Cathode S1
0 S2 signal Charge = Proportional a;an >
scintillation
122 PMTs (61 on top, 61 on bottom)
observe both S| and S2. = lonization electrons
N UV scintillation photons (~175 nm) g by O Feharm @Bvoun

*3D Position Reconstruction

o Depth (z) = time difference between

S| and S2 (drift time)
o xy = reconstructed from the S2 light

pattern.




Liquid Xenon TPC 4

*Ratio of charge to light is used as a discriminator against backgrounds (>99%):

o ELECTRONIC RECOIL (ER): ys and e- interact with the electrons = high ionization

to scintillation ratio
o NUCLEAR RECOIL (NR):WIMPs and neutrons interact with nuclei = lower

ionization to scintillation ratio
*Quenching processes are different between NR and ER
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LUX Timeline 5

2016 (May): 2016 (Sep):
. WS2014-16 LUX
2006: 2013 (Apr): 2014 (Sep): finishes o Decommission

LUX coll.  First Science Run  Second Science Run
formed  WS2013 starts  (WS2014—16) Starts 2016 (May-Aug):

Final calibrations

Analysis of the
collected data
continues!

2012 (Jul): 2013 (Nov): 2015 (Dec): 2016 (Jul): 2017 (Jun):
LUX moves WS2013 results WS2013 WS2014-16 LUX ina
underground reported reanalysis posted results released museum

(85 live-days) (95 live-days) (332 live-days)

Two main scientific runs:
WS2013:2013/04-2013/09, 95 live-days

WS2014-16:2014/09-2016/05, 332 live-days
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WS2014-16 Detector Response
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log, [S2 (phd)]

WIMP-search data WS2014-16
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Spin-Independent - WS52013+WS2014-16 ¢
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*Both Runs Combined, 95+332 live-days, 33.5 tonne-days

o http://journals.aps.org/prl/abstract/10.1103/PhysRevlett.|118.021303

PRL, 118, 021303, 2017


http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.021303

Spin-Independent - WS52013+WS2014-16 °
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* PandaX-ll - acquired between 2016 and 2017 (77.1 live-days) - PRL 119, 181302
o Lowest 90% C.L. exclusion - 0.086 zeptobarns at 40 GeV/c

* XENONIIT - acquired between 2016-2018 ( 278.8 live-days) - arXivI805.12562
o Lowest 90% C.L. exclusion - 0.041 zeptobarns at 30 GeV/c



Spin-Dependent - WS2013+WS2014-16
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* Both runs combined

* We observed an improvement of a factor of six compared with the
results from the first science run (PRL, I 16, 161302,2016).

PRL 118, 251302, 2017



LUX post-run objectives 11

Towards multi-tonne liquid xenon TPCs
|. Understand the response of the detector for different particle types, energy
deposition, electric field, etc

l. Wide range of calibration sources available: following the primary WIMP-search run
(Run04), a series of calibrations were performed ('“C, 3H, ¥™Kr, 222Rn, ...).

[l. Access to different electric fields in the detector: the drift field in the detector
changes between 40 V/cm and 400 V/cm.

ll. Understand in detail the backgrounds of the detector
lll.Look for other possible signals:

|. Dark matter: EFT, Inelastic DM, Axions, Axions, etc...

ll. Neutrino physics: 0v2p decays, Vv magnetic moment, CEVNS, etc..

Ener
Deneary 1 keVee 10 keVee 100 keVee | MeVe.
E 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1 >
DONE!(+/) SI & SD searches 8 24Xe DEC = =
134Xe OV2B  '36Xe OV2PB
DONE!( /) Axions and ALPs
- Daily and Annual Electron-recoil Modulations
NI Effective field theory and Inelastic Dark Matter
Bl R

Lig htIY Ionlsm% particles (multiple-scatters)
(Not all possible analysis are shown and not representative of our current analysis effo



ER Calibrations - '*C source 12

— model
Run04 4C (180 Vicm)
}  Run04 'H (180 V/em)
¢ Run03*H (180 V/cm)
Run03 *¥7Xe (180 V/cm)
PIXeY *7Ar (198 V/cm)

80 -
«14C B calibration

0 Emax = 156.5 keV, T2 = 5,730 a

*Light yield, charge yield, and
recombination probability estimated for

different energies and fields
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S| Pulse Shape Calibrations

13

* Xenon scintillation originates from two excited molecular states with decay times

o Singlet state - 4 ns
o Triplet state - 24 ns

Singlet-to-triplet ratio is different for
electron recoil (ER) and nuclear recoil (NR).

* Measurement of the scintillation timing characteristics of liquid xenon using a
template-fitting method to reconstruct the detection times of photons:

o measurement of the singlet-to-triplet scintillation ratio for ER and NR (first ever)

Systematic uncertainty of the linear fit

'

—
—
—

/A 0.35
14C data (this work)
0.20F @)
o 3H data (this work) ‘= 0.30F
= Linear fit — 0.042 Q <
o4 0.15F Exp. fit — 0.063xE-0-12 -
=2 S,
Q i .
£ Takiya 2016, Kubota 1979 &
5 0.10F 207B; |.C. > 0.20F
9 0
@ Lo
£ 3
0p} r .
0 0.15
<— Systematic uncertainty of the linear fit
| | | ! o O.Iq
0 10 20 30 40 1060

Electron Recoil Energy (keV)

—+— D-D data (this work)

Linear fit — 0.269
Exp. fit — 0.15xE0-15

20 30 40 50 60 70 80 90
Nuclear Recoil Energy (keV)

. T —




S| Pulse Shape

o NR/ER discrimination using the S| prompt
fraction defined as

_ Jig S1(z)dr >~ Prompt Photons

PF = —
3S1(r)dr > Total Photons

to-3, variables are allowed to vary
independently to minimize the leakage of ER
events into the 50% NR acceptance region.

See more in PRD 97, 112002 (2018)!
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0.1+ events with a PF smaller than the
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Top: Fraction of ER events that leak into the NR region.



https://journals.aps.org/prd/pdf/10.1103/PhysRevD.97.112002

Axions and Axion-like Particles

15

* The axion field provides a dynamical solution to the strong CP violation.

* Two sources of axions studied - |) axions from the sun and IlI) ALPs slowly moving
within our Galaxy.

* They couple with electrons, via the axio-electric effect

Counts/kg/day
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Figure: Solar axion spectral shape: product of
solar axion flux [JCAP 12,008 (2013)] and
photo- electric cross section on xenon.

gAe measures the coupling
between axions and electrons.
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Figure: Detector response for a 10 keV ALP.
Axio-electric absorption leads to electron recoils
with kinetic energy equal to the ALP mass: sharp
spectral feature, smeared by energy resolution.
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*WS2013 data: 95 live-days, | 18 kg fiducial.
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LUX 2013 (this work)

i L
- Red giant - LUX 2013 (this work)
m, [keV/c?] m, [keV/c?]
gr. > 3.5x10-'2 (90% CL) gn. > 4.2x10-'3 (90% CL)
ma > 0.12 eV/c? (DFSZ model) (across the range |-16 keV)

ma > 36.6 eV/c? (KSVZ model)



ER Modulations

*DM interaction rate in an Earth-based
experiment is expected to modulate due
to the motion of the Earth around the
sun.

* LUX Electron-recoil data:

o Low background rate ~3 counts/keV/tonne

o Modest rate excess at 3 keV - maybe
explained by 3’Ar.

o Electron recoil events uniformly distributed
in the volume.

* Analysis:
oWS2013 and WS2014-16 (2 calendar years)
o Using innermost volume (51.4 kg)

o Remove periods of data with unstable slow
control parameter (temperature, pressure

and liquid level), during and after calibrations,

low liquid xenon purity - 27| live-days.

WIMP
wind

December

300E |27Xe LUX
2502— 37T Ar? Preliminary
2003—

1505— 1 + T
: Ty
100~ -|-_|_+

B LUX

F . Preliminary
OlIIIIIIIIIIIII|IIII|IIII|IIII|IIII|I|1I]I|II|IIII

0 1 2 3 4 5 6 7 8 9 10
Energy skeVeez
(top) Low energy spectrum

observed in LUX WS




Annual and Diurnal Modulation

» ~2 cpd/keV/tonne - 40x lower than DAMA;

* Best fits using unbinned extended maximum
likelihood;

* Day/night rates

02.06 / 2.14 cpd/keV/tonne (asymmetry
factor of -1.6+8.7%)

* Next —look to other energy bins.
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events/kg/day/keV

Sub-GeV DM

*The light yield for a nuclear recoil is

practically O below I.l keV — can

only look for mpn=5GeV.

* LUX is more sensitive to lower

energies of electron recoils (50%

energy threshold):

oNuclear recoils = 3.3 keV

oElectron recoils = [.2 keV

i 0.5GeV
106 A

VLUX ;

10t} '. o

2 'Preliminary ER Efficiency
T i-3H data
ool Elastic

(NR signal)

Bremsstr;_fhlung (ER
signal) ¢

101 10° 10t
Energy [keV]

1.0

1
e
)

1
e
]

Il
e
I

1
@
\V]

0.0

Election recoil detection efficiency

Top: Scattering rates for 0.5 GeV DM

1 ER Efficier
(PRD 92

> 0.1}
=
k>
(@]
2
M 001 -

4 NR Efficiency

/i PRL11,161301 (2016)

0.001 L L

1 10
recoil energy (keV)

*LUX can detect sub-GeV DM via
Bremsstrahlung
o Emission of a photon from a xenon

atom — huclear interaction, but
electron recoil signal.

*Using the same data set and
background model of the WS2013
data (except that we are looking for
signal in the electron recoil band).


https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.116.161301
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.072009

1070

Sub-GeV DM
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Limit for 95 live-days of data (WS2013, 13.8 tonne-day exposure).

100
Masspyr [GeV]

CRESST-II 2015

CDMSlite 2016

v — cleus 2017
CRESST-III 2017
CDEX-10 2018
DarkSide-50 Binomial 2018
XENON100 2016

LUX 2016

LUX 2018 observed 90% CL
Expected 90% CL - median
Expected 90% CL +20
Expected 90% CL +1o

Limit from the complete LUX exposure is forthcoming.
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The LUX-ZEPLIN Experiment 21

(
* Turning on by 2020 with I,OOD

initial live-days plan
*|n the same location of LUX

* |0 tons total, 7 tons active,
~5.6 ton fiducial

QJnique triple veto system

_J

PMTs

120 outer
detector

",
Existing LUX
> water tank

Gd-loaded
liquid
scintillator

Instrumentation
conduits

(Main Detector) I
2-phase XeTPC n tubes
494 (131) TPC (Xe skin) PMTs



SI WIMP-nucleon cross section [cm?]
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Sensitivity for 1,000 live days and a 5.6 tonnes

Paper on arXiv: Projected WIMP sensitivity of the
LUX-ZEPLIN (LZ) dark matter experiment

arXiv 1802.06039

The LUX-ZEPLIN Sensitivity 22

SD WIMP-neutron cross section

SD WIMP-neutron cross section [cm?]
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https://arxiv.org/abs/1802.06039

Conclusions

* The LUX spin-independent WIMP limit led the field
for 3 years (2013-2016). Only recently are the
larger XeTPCs catching up.

« Significant improvements in the calibration of
xenon detectors:

o LUX vyields, efficiencies, and fields well calibrated,
simulated, and understood;

o New pulse shape discrimination presented.

* And is still producing new physics results:

o No annual or the diurnal modulation observed in the
ER signal.

oand more results in the back-up slides!
* More analysis forthcoming

o Effective field theory, double electron capture,
neutrinoless double beta decay, more calibrations etc.

* Onwards and downwards: LUX-ZEPLIN (LZ)
experiment under construction, 7 tonne active
mass (2020).
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The LUX Experiment 26

* 370 kg Liquid Xenon
Detector (59 cm height, 49
cm diameter)

0250 kg in the active
region (with field)

” & .
Construction materials

chosen for low radioactivity
(Ti, Cu, PTFE)

' -:7 ; 4 /',-, y > .
122 ultralow- = S o t'_l ‘ 2 T-r" \\

ziCE)gl;‘ogllngnPé\g;l;ig)l Active region defined by PTFE
observe’ both S1 and S2 reflectors (high reflectivity

>97%) - high light collection
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83mKr monitors detector performance

«8mKr injected in the gas system and
decaying uniformly inside the detector. It
decays by emitting 2 internal conversion
electrons

032.2 keV (Ti2 = 1.83 h) followed by 9.4 keV 1

(Ti2 = 154 ns) (Mono-energetic for our 5
analyses)

osee PRD 96, 112009 s} "%‘*’
«83mK ysed for: 100 B

oOverall stability monitoring

25 v v v v " v.
20! o
15

X (cm)
o

oDevelop S| and S2 position corrections

« both S| and S2 pulses depend on the location of the L
25 -20-15-10 -5 O 5 10 15 20 25

event due to geometrical light collection and
electronegative impurities. y (cm)
oMap variations of the electric field in the 83mKr data (Drift Time 4 - 8 us), SSR
detector - see lINST 12 P11022 The large difference between the drift field (180 Vicm) and the

0 Develop and test the position extraction field (2.8 kV/cm in liquid) causes the the drift field lines
to be compressed as they pass through the gate plane; any

reconstruction - see '"NST 13 P02001 electrons leaving the drift volume appear only in narrow strips

between each pair of gate wires creating the strip pattern
observed in this figure.




3H and D-D calibrate the detector response 28

5000 | ; Data ]
- ER Calibrations: Tritium, naked B decay S 4000 gl
o Emax=18.6 keV (S1~120 phd), Tin=12.32 a. g 3000 Sk
o Tritiated methane injected in the gas system and ;‘:’32000'

:

removed by the getter (T,, ~ 6 h).

. . 0=
o ER band calculation (right) and absolute O NN R— R E—
. . @ 2} =1 o tec atee, ot
calibration of Qy and L, for ER down to ~| § Qb e N G it
- P S —— e S S S S S S e S S j
keVee. & 0 8 10 15 20

PRD 93, 072009, 2016
*NR Calibrations: 2.45 MeV neutrons

o Generated by a D-D generator placed outside
the detector and collimated by an air-filled pipe.

o Performed quarterly at different z’s.
o Neutrons scatter elastically with the nucleus
o Double-scatters - ionization yield Qy

o Single-scatters - scintillation yield Ly and NR
band calibration.

arXiv:1608.05381




Backgrounds in WS2014-16 »

Expected number below

Background source T

External Gamma Rays 1.51£0.19 }Bulk volume, but leakage at all

Internal Betas 1.20+0.06 energies
Low-energy, but confined to the edge
Rn plate out (wall back.) 8.7+3.5 of our fiducial volumet
ACCidentaI S I -52 0.3410- I 0 In the bulk volume’ Iow_ energ)l,
i in the NR band

Solar 8B neutrinos (CEVNS) 0.15+0.02

*These figures are figure of merit only. In our analysis we use a likelihood analysis.

o+ ~ 0.3 single scatter neutrons, e.g. from (&, n), not included in PLR

T - Our likelihood analysis includes position information, so these events have low likelihood as signal.



LUX Likelihood Analysis

* A profile-likelihood test (PLR) was
implemented to compare the models with
the observed data

*5 un-binned PLR dimensions

o z/drift time, r, d, S| and log|o(S2)
* | binned PLR dimension:

o Event date

e Detector’s response (S1,52) modeled with
NEST (Noble Element Simulation Technique)
with input from our situ calibration data

o See M. Szydagis 2013 JINST 8 C10003
*Data in the upper-half of the ER band were

compared to the model (plot at right) to
assess goodness of fit.

* Good agreement with background-only
model, p-value >0.6 for each projection.

30

250 300
drift time (us)

2 3
phi (radian)

—|— Observed data

Background only model
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ER and NR ER Light and NR Light and
bands Charge yields Charge yields

55

oijid Charge

ER band

log, ,(S2/S1)
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Figure: NR and ER calibration PRD 93. 072009. 2016 Xiv:1608.0538 |
(PRD, 95, 012008, 2017) ’ ’ arXiv
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*The '27Xe radioisotope is present in the WS2013 data due to cosmogenic
activation of the xenon during its time on the surface.

036.4 days of half-life, '27Xe initial activity of 490 + 95 UBq/kg

o Decays to an excited state of '?’| via electron capture (EC). With a ~62% probably, the
decay of the excited state is via a single Y-ray emission (203 keV or 375 keV).

o The vacancy resulting from the electron capture is subsequently filled with an electron
from a higher level via emission of cascade X-rays or Auger electrons.

~ 33.2 keV
5; i 5 T T T 17T N T T T \M T 1T L T T T T \I{\\ T
=0, 40/
§ 1 375 keVi:
S g kev : 35} 5.2 keV
s B 145
= F = 30"
I ‘ _ S
N E 525¢ |
gl gt oEIROl
=2 g 1 I 3207 l.1 keV v ]
% i o rgeS2 5 5= § 15+ 190 eV !i ‘g I
> 1k PR | e
T 10} ! ?'d, |
3 i E 51 ‘%ﬁ-’f \ g |
0r ] \ / \
O’—T\Hu | S ‘\T"\IHHH\"T
i) B2 10" 10° 10°
-1 OF. 1 ' 2 > [31 ‘]*)] 5 S2 [electron]
1rst vertex Og electron "— —
—— 01 — PRD, 96, 112011, 2017



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.112011

21 33
Backgrounds - %'°Pb decay
* During construction 222Rn progeny plate out on the inner PTFE walls.
* All short lived isotopes decay away leaving 2'°Pb, 2/%Bij, and 2!°Po.
* These isotopes can be absorbed off of the walls into the xenon.
219Pb in the fiducial volume
210Ph i
Pb in the walls r<20 cm, at ~4 cm from the wall
% i:cf:iﬁ:r;:ence Xjrays % 0'12; LUX j:nzl R:gion
£ e Gt S g [ Preliminary
LUX § 0.08: A e
Preliminary - + H + H H_
il i
’ - 0.04_— + +
0:.,\,.|vw| ----- mwm\ul?-nuwluwuui\.; L J
kaVias 20 30 40 50 60 70 80keve20

Measured activity is
>5.7+£0.4 mBg/cm?
(WS2014-16 data)

S

Measured activity is
<0.1 pBq/kg (WS2013)



LZ Sensitivity to other physics gy

* Axions and Axion-like searches:

X,

o Axions: gae>1.5x10-'2 (90% C.L.).
o Axion-like particles: gac>1.5x10-'2 (90% C.L.) 100 F
* Neutrinoless Double Beta Decay: |

_
<

o Two isotopes available '3*Xe and '3¢Xe.

o Preliminary sensitivity studies show a

—_
S
)

[ | = Total background

counts / keV / 1000 days

[ — 238U
232,

limit on the OVBP half-life of '36Xe
(90% C.L). .
136xe 2083

e Elastic Scattering of Solar Neutrinos:

(=
w

== 0uBB [14x 107 a]

o Expected 838 pp events, 69 events from ’Be

| -

1 1
2100 2200 2300

from SN (Ev<220 keV) in the |.5 to
window.

—

2400

. 1 1
2500 2600 2700 2800

Energy [keV]

34

—

Background spectra for '3¢Xe 0v2f

* Neutrino Magnetic Moment (Hv):

Sensitivity limit Ti2 (OV2[) >0.74x1026 a (90% C.L.).

oThe LZ ~I| keV energy threshold suggests an increase in sensitivity of ~| order of magnitude

relative to the upper limit of 5.4x10!! pg set by BOREXINO.
* Coherent Nuclear Scattering of Solar Neutrinos (CEVNYS):

o Expected 7 events from 8B neutrinos (with a signal very similar to a 6 GeV WIMP).



