Constraining TeV-scale dark matter with cosmic-ray antiprotons

[based on Cuoco, JH, Korsmeier, Krämer, 1711.05274, JCAP]

Jan Heisig (RWTH Aachen University)

June 26, Annecy-le-Vieux, France

THE 14TH INTERNATIONAL WORKSHOP	DSU
ON THE DARK SIDE OF THE UNIVERSE	2018

Dark matter indirect detection:

- Dark matter searches joint effort
- Indirect detection probes annihilation
- AMS-02: cosmic-ray precision era

Dark matter indirect detection:

- Dark matter searches joint effort
- Indirect detection probes annihilation
- AMS-02: cosmic-ray precision era

Dark matter indirect detection:

Dark matter searches joint effort

main uncertainty: cosmic-ray propagation

- Indirect detection probes annihilation
- AMS-02: cosmic-ray precision era

Searches for dark matter in cosmic-rays

[see e.g. L. Bergstrom, J. Edsjo, and P. Ullio, ApJ, 526, 215 (1999); F. Donato, N. Fornengo, D. Maurin, and P. Salati, PRD69, 063501 (2004); T. Bringmann and P. Salati, PRD75, 083006 (2007); F. Donato, D. Maurin, P. Brun, T. Delahaye, and P. Salati, PRL. 102, 071301 (2009); N. Fornengo, L. Maccione, and A. Vittino, JCAP1404,003; D. Hooper, T. Linden, and P. Mertsch, JCAP 1503, 021; V. Pettorino, G. Busoni, A. De Simone, E. Morgante, A. Riotto, and W. Xue, JCAP 1410, 078 (2014); M. Boudaud, M. Cirelli, G. Giesen, and P. Salati, JCAP1505, 013 (2015); J.A. R. Cembranos, V. Gammaldi, and A. L. Maroto, JCAP 1503, 041 (2015); M. Cirelli, D. Gaggero, G. Giesen, M. Taoso, and A. Urbano, JCAP 1412, 045 (2014); T. Bringmann, M. Vollmann, and C. Weniger, Phys. Rev. D90, 123001 (2014); G. Giesen, M. Boudaud, Y. Genolini, V. Poulin, M. Cirelli, P. Salati, and P. D. Serpico, JCAP 1509, 023 (2015); C. Evoli, D. Gaggero, and D. Grasso, JCAP 1512, 039]

- MIN/MED/MAX scenario: Large uncertainties
- \Rightarrow Joint fit of propagation parameters using precise AMS-02 data

Numerically solve diffusion equation:

[using Galprop (or Dragon)]

$$\frac{\mathrm{d}\psi_{i}}{\mathrm{d}t} = q_{i}(\boldsymbol{x}, p) + \boldsymbol{\nabla} \cdot (D_{\boldsymbol{x}\boldsymbol{x}}\boldsymbol{\nabla}\psi_{i} - \boldsymbol{V}\psi) + \frac{\partial}{\partial p}p^{2}D_{pp}\frac{\partial}{\partial p}\frac{1}{p^{2}}\psi_{i} \qquad i = \mathrm{He}, p, \bar{p}$$
$$-\frac{\partial}{\partial p}\left(\frac{\mathrm{d}p}{\mathrm{d}t}\psi_{i} - \frac{p}{3}\boldsymbol{\nabla} \cdot \boldsymbol{V}\psi_{i}\right) - \frac{1}{\tau_{f}}\psi_{i} - \frac{1}{\tau_{r}}\psi_{i}$$

Fit parameters: $z_{\rm h}$

Jan Heisig (Aachen University)

Numerically solve diffusion equation:

[using Galprop (or Dragon)]

$$\frac{\mathrm{d}\psi_{i}}{\mathrm{d}t} = (q_{i}(\boldsymbol{x}, p) + \nabla \cdot (D_{xx}\nabla\psi_{i} - V\psi) + \frac{\partial}{\partial p}p^{2}D_{pp}\frac{\partial}{\partial p}\frac{1}{p^{2}}\psi_{i}$$
$$-\frac{\partial}{\partial p}\left(\frac{\mathrm{d}p}{\mathrm{d}t}\psi_{i} - \frac{p}{3}\nabla \cdot V\psi_{i}\right) - \frac{1}{\tau_{f}}\psi_{i} - \frac{1}{\tau_{r}}\psi_{i}$$

Source term - primaries:

Astrophysical Sources:
 SNR or Pulsars

⇒ *p*, He, …

Injection spectrum:

Fit parameters: $z_{
m h}, \gamma_{1,p}, \gamma_{2,p}, \gamma_1, \gamma_2, R_0, s$

Fit parameters: $z_{\rm h}, \gamma_{1,p}, \gamma_{2,p}, \gamma_1, \gamma_2, R_0, s, D_0, \delta$

Jan Heisig (Aachen University)

Numerically solve diffusion equation:

[using Galprop (or Dragon)]

$$\begin{split} \frac{\mathrm{d}\psi_i}{\mathrm{d}t} &= q_i(\boldsymbol{x}, p) + \boldsymbol{\nabla} \cdot (D_{xx} \boldsymbol{\nabla} \psi_i - \boldsymbol{V} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i \\ &- \frac{\partial}{\partial p} \left(\frac{\mathrm{d}p}{\mathrm{d}t} \psi_i + \frac{p}{3} \boldsymbol{\nabla} \cdot \boldsymbol{V} \psi_i \right) - \frac{1}{\tau_f} \psi_i - \frac{1}{\tau_r} \psi_i \end{split}$$

- Astrophysical Sources
- Diffusion
- Convection

Winds perpendicular to the galactic plane

 $V = V_{0,c} \operatorname{sign}(z) e_z$

Fit parameters: $z_h, \gamma_{1,p}, \gamma_{2,p}, \gamma_1, \gamma_2, R_0, s, D_0, \delta, v_{0,c}$

Numerically solve diffusion equation: [using Galprop (or Dragon)]

$$\frac{\mathrm{d}\psi_{i}}{\mathrm{d}t} = q_{i}(\boldsymbol{x}, p) + \boldsymbol{\nabla} \cdot (D_{\boldsymbol{x}\boldsymbol{x}}\boldsymbol{\nabla}\psi_{i} - \boldsymbol{V}\psi) + \frac{\partial}{\partial p}p^{2}D_{pp}\frac{\partial}{\partial p}\frac{1}{p^{2}}\psi_{i}$$
$$- \left(\frac{\partial}{\partial p}\left(\frac{\mathrm{d}p}{\mathrm{d}t}\psi_{j} - \frac{p}{3}\boldsymbol{\nabla} \cdot \boldsymbol{V}\psi_{i}\right) - \frac{1}{\tau_{f}}\psi_{i} - \frac{1}{\tau_{r}}\psi_{i}$$

2 z_h

- Astrophysical Sources
- Diffusion
- Convection
- Reacceleration
 Scattering off magnetic clouds:

Fit parameters: $z_h, \gamma_{1,p}, \gamma_{2,p}, \gamma_1, \gamma_2, R_0, s, D_0, \delta, v_{0,c}, v_{Alfen}$

Numerically solve diffusion equation:

[using Galprop (or Dragon)]

$$\frac{\mathrm{d}\psi_{i}}{\mathrm{d}t} = (q_{i}(\boldsymbol{x}, p)) + \nabla \cdot (D_{\boldsymbol{x}\boldsymbol{x}} \nabla \psi_{i} - \boldsymbol{V}\psi) + \frac{\partial}{\partial p} p^{2} D_{pp} \frac{\partial}{\partial p} \frac{1}{p^{2}} \psi_{i}$$
$$- \frac{\partial}{\partial p} \left(\frac{\mathrm{d}p}{\mathrm{d}t} \psi_{i} - \frac{p}{3} \nabla \cdot \boldsymbol{V}\psi_{i} \right) \left(\frac{1}{\tau_{f}} \psi_{i} - \frac{1}{\tau_{r}} \psi_{i} \right)$$

TA

- Astrophysical Sources
- Diffusion
- Convection
- Reacceleration
- Energy loss
- Fragmentation and decay Loss for one species is gain for the other

Secondaries:

<u>p</u>, (Li, B, ...)

Fit parameters: $z_h, \gamma_{1,p}, \gamma_{2,p}, \gamma_1, \gamma_2, R_0, s, D_0, \delta, v_{0,c}, v_{Alfen}$

Numerically solve diffusion equation:

[using Galprop (or Dragon)]

$$\begin{aligned} \frac{\mathrm{d}\psi_i}{\mathrm{d}t} = & (q_i(\boldsymbol{x}, p)) + \boldsymbol{\nabla} \cdot (D_{xx} \boldsymbol{\nabla} \psi_i - \boldsymbol{V} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i \\ & - \frac{\partial}{\partial p} \left(\frac{\mathrm{d}p}{\mathrm{d}t} \psi_i - \frac{p}{3} \boldsymbol{\nabla} \cdot \boldsymbol{V} \psi_i \right) - \frac{1}{\tau_f} \psi_i - \frac{1}{\tau_r} \psi_i \end{aligned}$$

- Astrophysical Sources
- Diffusion
- Convection
- Reacceleration
- Energy loss
- Fragmentation and decay
- Additional primary source for \bar{p} : Dark Matter!

Numerically solve diffusion equation: [using Galprop (or Dragon)]

$$\begin{split} \frac{\mathrm{d}\psi_i}{\mathrm{d}t} &= q_i(\boldsymbol{x}, p) + \boldsymbol{\nabla} \cdot (D_{xx} \boldsymbol{\nabla} \psi_i - \boldsymbol{V} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i \\ &- \frac{\partial}{\partial p} \left(\frac{\mathrm{d}p}{\mathrm{d}t} \psi_i - \frac{p}{3} \boldsymbol{\nabla} \cdot \boldsymbol{V} \psi_i \right) - \frac{1}{\tau_f} \psi_i - \frac{1}{\tau_r} \psi_i \end{split}$$

- Astrophysical Sources
- Diffusion
- Convection
- Reacceleration
- Energy loss
- Fragmentation and decay
- Dark Matter

Figures: Credit to Michael Korsmeier

Solar modulation:

- Phenomenological description: force-field approximation with $\phi_{\rm AMS}$
- Our approach:
 - Constrain local interstellar space (LIS) flux directly by VOYAGER data
 - Exclude data below 5 GV in the main fit
 - Marginalized over ϕ_{AMS} on-the-fly for each GALPROP evaluation

- Astrophysical Sources
- Diffusion
- Convection
- Reacceleration
- Energy loss
- Fragmentation and decay
- Dark Matter
- Data:
- AMS-02: *p*, He, *p*[AMS 2015, 2016]
 CREAM: *p*, He
 [Yoon et al. 2011]
 VOYAGER: *p*, He
 [Stone et al. 2013]

Fit parameters: $z_{\rm h}, \gamma_{1,p}, \gamma_{2,p}, \gamma_1, \gamma_2, R_0, s, D_0, \delta, v_{0,c}, v_{\rm Alfen}, \langle \sigma v \rangle_{\rm DM}, m_{\rm DM}, (\phi_{\rm AMS})$

Limit setting

Explore 13-dim. parameter space with MultiNest

 \Rightarrow Propagation uncertainties taken into account

Results for dark matter limits

Jan Heisig (Aachen University)

DSU 2018, June 26th

Systematic uncertainties

Results for all non-leptonic SM channels

Jan Heisig (Aachen University)

Uncertainties from DM density profile

• Dark matter source term $\propto \rho^2$:

$$q_{\bar{p}}^{(\mathrm{DM})}(\boldsymbol{x}, E_{\mathrm{kin}}) = \frac{1}{2} \left(\frac{\rho(\boldsymbol{x})}{m_{\mathrm{DM}}}\right)^2 \sum_{f} \langle \sigma v \rangle_f \frac{\mathrm{d}N_{\bar{p}}^f}{\mathrm{d}E_{\mathrm{kin}}}$$

Cuspy profile:

$$\rho_{\rm NFW}(r) = \frac{\rho_{\rm h}}{(r/r_{\rm h})(1+r/r_{\rm h})^2}$$

Cored profile:

$$\rho_{\rm Bur}(r) = \frac{\rho_{\rm c}}{(1 + r/r_{\rm c})(1 + r^2/r_{\rm c}^2)}$$

Uncertainties from DM density profile

Comparison: HESS limits on WW [HESS 1607.08142]

⇒ CRs observation
 much less sensitive
 to DM profile than
 GC gamma-rays

Jan Heisig (Aachen University)

Interpretations within DM models

Interpretation within minimal dark matter

[Cirelli, Fornengo, Strumia hep-ph/0512090, see also 0706.4071, 1507.05519, ...]

$\mathcal{L} = \mathcal{L}_{\rm SM} + \bar{\chi}(i\not\!\!D + M)\chi$

Quantum numbers		DM can	DM mass	$m_{\rm DM^{\pm}} - m_{\rm DM}$	f Events at LHC	$\sigma_{\rm SI}$ in		
$SU(2)_L$	$\mathrm{U}(1)_Y$	Spin	decay into	in TeV	in MeV	$\int \mathcal{L} dt = 100/\text{fb}$	$10^{-45}{\rm cm}^2$	
2	1/2	0	EL	0.54 ± 0.01	350	$320 \div 510$	0.2	
2	1/2	1/2	EH	1.1 ± 0.03	341	$160 \div 330$	0.2	Higgsino
3	0	0	HH^*	2.0 ± 0.05	166	$0.2 \div 1.0$	1.3	
3	0	1/2	LH	~ 2.8	166	$0.8 \div 4.0$	1.3	Wino
3	1	0	HH, LL	1.6 ± 0.04	540	$3.0 \div 10$	1.7	
3	1	1/2	LH	1.8 ± 0.05	525	$27 \div 90$	1.7	
4	1/2	0	HHH^*	2.4 ± 0.06	353	$0.10 \div 0.6$	1.6	
4	1/2	1/2	(LHH^*)	2.4 ± 0.06	347	$5.3 \div 25$	1.6	
4	3/2	0	HHH	2.9 ± 0.07	729	$0.01 \div 0.10$	7.5	
4	3/2	1/2	(LHH)	2.6 ± 0.07	712	$1.7 \div 9.5$	7.5	
5	0	0	(HHH^*H^*)	5.0 ± 0.1	166	$\ll 1$	12	
5	0	1/2	_	~ 9.4	166	$\ll 1$	12	Quintuplet
7	0	0	-	8.5 ± 0.2	166	≪1	46]

 \searrow no Z₂ symmetry needed for stabilization!

Constraints on minimal dark matter: wino

Constraints on minimal dark matter: higgsino

Jan Heisig (Aachen University)

DSU 2018, June 26th

Constraints on minimal dark matter: quintuplet

Jan Heisig (Aachen University)

DSU 2018, June 26th

What about lighter dark matter?

Constrain much weaker

[Talk of Michael Korsmeier]

- Possible signal around ~100GeV
- More difficult to establish DM signal than excluding DM

- Antiproton xs errors [see e.g. Winkler 2017; Korsmeier, Donato, Di Mauro 2018] [cf. Reinert, Winkler 2018]
- Solar modulation uncertainties
- Missing information on correlations in AMS-02 data

What about lighter dark matter?

Constrain much weaker

[Talk of Michael Korsmeier]

- Possible signal around ~100GeV
- More difficult to establish DM signal than excluding DM

- Antiproton xs errors [see e.g. Winkler 2017; Korsmeier, Donato, Di Mauro 2018]
- Solar modulation uncertainties
- Missing information on correlations in AMS-02 data

Conclusions

- With AMS-02 cosmic-ray precision era started
- Reduce uncertainties w.r.t. MIN/MED/MAX scenario:
 ⇒ Joint fit of propagation parameters and dark matter
- Strong limits on heavy dark matter
- Robust w.r.t. choice of DM profile
- Minimal DM: wino scenario strongly disfavored
- Possible hint for dark matter, future investigations:
 - Antiproton cross sections
 - Solar modulation
 - Correlations in AMS data

Backup

Cosmic-ray fit results

With dark matter (bb):

Without dark matter:

Cosmic-ray fit results

Diffusion slope: $\delta \approx 0.25$

 $\delta \approx 0.36$

