
DSU 29/06/2018

Pre-thermalization Production of Dark Matter

Marcos A. G. García

Rice University

1709.01549, MG, Y. Mambrini, K. Olive, M. Peloso
1806.01865, MG, M. Amin

Marcos A. G. García. DSU 29/06/2018 1/11



The Path To Thermalization

Pre-thermal effects

This talk

Andreas’ talk

UV or IR freeze-in(out)

Pre-Treh effects

Yann’s talk

Keith’s, Debtosh’s, Mathias’, ... talks

Model Building

Marcos A. G. García. DSU 29/06/2018 2/11



Freeze-in vs. Freeze-out
The reheating and thermalization processes after inflation have a finite duration
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Freeze-in vs. Freeze-out
The reheating and thermalization processes after inflation have a finite duration
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Freeze-in vs. Freeze-out
The reheating and thermalization processes after inflation have a finite duration
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Freeze-in vs. Freeze-out
The reheating and thermalization processes after inflation have a finite duration

γ

inflation reheating radiation

thermalization

ϕ

t

Yχ p ∼ mϕ

p ∼ Tmax

p ∼ Treh

Yχ ≪ 1

σ(s)

Freeze-in:

• Not in equilibrium

• Non-thermal and
thermal production

• Yχ ←→ ⟨σv⟩prod

• UV dominated
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Pre-thermalization

ρ̇ϕ + 3Hρϕ + Γϕρϕ = 0
ρ̇γ + 4Hργ − Γϕρϕ = 0

ρϕ + ργ = 3M2
PH2

y
nγ ≃

ρend
mϕ

(
a

aend

)−3 (
1− e−Γϕt

)
< g nT

γ ∼ g ρ3/4
γ

If Γϕ/mϕ ≲ 10−10 (Planck suppressed)
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Pre-thermalization
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fϕ = (2π)3nϕδ
3(p)y

∂fγ
∂t
−Hk∂fγ
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2π2
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Pre-thermalization

fγ(k) ≃ 24π2 nγ

m3
ϕ

(mϕ

2k

)3/2
θ(mϕ/2 − k)

∂fχ
∂t

− Hp1
∂fχ
∂p1

= −
1

2p1

∫ gχd3p2

(2π)32p2

gγd3k1

(2π)32k1

gγd3k2

(2π)32k2
(2π)4

δ
(4)

(k1 + k2 − p1 − p2)

×
[
|M|2χχ→γγ fχ(p1) fχ(p2) [1 + fγ(k1)] [1 + fγ(k2)]

− |M|2γγ→χχ fγ(k1) fγ(k2) [1 − fχ(p1) ] [1 − fχ(p2) ]

]
y

ṅχ + 3Hnχ = 18g2
χg2

γ

n2
γ

m3
ϕ

∫ m2
ϕ

0
ds
√

sσ(s)
[
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(
mϕ+

√
m2

ϕ
−s

√
s

)
−
√

m2
ϕ
−s

mϕ

]
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Thermalization

ṅχ + 3Hnχ = 18g2
χg2

γ

n2
γ

m3
ϕ
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ϕ
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ds
√

sσ(s)
[
ln
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mϕ+

√
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ϕ
−s

√
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−
√

m2
ϕ
−s

mϕ

]

Gauge-interacting γ problematic for small angle scattering

̸= 0

t−divergent

(L. Landau, I. Pomeranchuk, Dokl. Akad. Nauk Ser. Fiz. 92 (1953) 535; A. Migdal, Phys. Rev. 103 (1956) 1811)
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Thermalization

ṅχ + 3Hnχ = 18g2
χg2

γ

n2
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m3
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sσ(s)
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ln
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m2
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√
s
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√

m2
ϕ
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Gauge-interacting γ equilibrate through small angle scattering

Including LPM suppression

tγ ∼
√

τE
q2
⊥

Elastic screening scale

m2
s ∼ α

∫
d3k fγ(k)/k

(P. Arnold, G. Moore, L. Yaffe, hep-ph/0111107; hep-ph/0204343; hep-ph/0209353)
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Thermalization
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Gauge-interacting γ equilibrate through small angle scattering

(K. Harigaya, K. Mukaida, 1312.3097; K. Mukaida, M. Yamada, 1312.3097)
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Thermalization

ṅχ + 3Hnχ = 18g2
χg2

γ

n2
γ

m3
ϕ

∫ m2
ϕ

0
ds
√

sσ(s)
[
ln

(
mϕ+

√
m2

ϕ
−s

√
s

)
−
√

m2
ϕ
−s

mϕ

]

Gauge-interacting γ equilibrate through small angle scattering

Γϕtth ≃ α−16/5

(
Γϕm2

ϕ

M 3
P

)2/5

∼ 10−6,−7

y
Tmax ≃ α4/5mϕ

(
24

π2greh

)1/4
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ΓϕM2

P
m3

ϕ

)2/5

(K. Harigaya, K. Mukaida, 1312.3097; K. Mukaida, M. Yamada, 1312.3097)
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Post-thermalization
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√
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8π4
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dk1 dk2 d cos θ12

(k1k2)
2(1 − cos θ12)

(ek1/T ± 1)(ek2/T ± 1) σ(s)y M.B.

≃
g2
χg2

γT
2(2π)4

∫ ∞

0
ds s3/2σ(s)K1(

√
s/T)

(P. Gondolo, G. Gelmini, Nucl. Phys. B360 (1991) 145)
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Non-thermal vs. thermal production
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√
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√
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ṅχ + 3Hnχ =
g2
χg2

γT
2(2π)4

∫ ∞

0
ds s 3/2σ(s)K1(

√
s/T )

Marcos A. G. García. DSU 29/06/2018 7/11



Non-thermal vs. thermal production
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Non-thermal vs. thermal production
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Non-thermal vs. thermal production
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Non-thermal vs. thermal production

σ(s) ∝ sn/2
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Light Gravitino
ϕ → g + g and weak scale supersymmetry
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(M. Bolz et. al., hep-ph/0012052)

(V. Rychkov, A. Strumia, hep-ph/0701104)
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Light Gravitino
ϕ → g + g and weak scale supersymmetry
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Heavy Gravitino
High scale supersymmetry. Only susy state below the inflationary scale is the gravitino

Leading-order universal Goldstino-matter interactions (F =
√

3m3/2MP):

L2G =
i

2F 2

(
Gσµ∂νḠ − ∂νGσµḠ

)
Tµν

(∂µH∂νH† + h.c.)

(ψ̄σ̄µ∂νψ + · · · )

(Fλa
µ Fa

νλ) ⟨σv⟩NT =
154m6

ϕ

5(64)2F 4

⟨σv⟩T =
6400π11T 6

(945)2ζ(3)2F 4

(E. Dudas, Y. Mambrini, K. Olive, 1704.03008)
(K. Benakli et. al., 1701.06574)
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Heavy Gravitino
High scale supersymmetry. Only susy state below the inflationary scale is the gravitino
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Heavy Gravitino
High scale supersymmetry. Only susy state below the inflationary scale is the gravitino

Assuming instantaneous reheating and thermalization...

Ωinst
3/2 h2 ≃ 0.11

(
0.1 EeV

m3/2

)3( Treh

2.2 × 1010

)7

vs. accounting for their finite duration...

Ω3/2h2 ≃ 0.11
(

0.1 EeV
m3/2

)3( Treh

2.2 × 108

)19/5( mϕ

3 × 1013 GeV

)24/5(0.030
α3

)16/5

(similar analysis applies to DM production through heavy spin-2 mediators, N. Bernal et. al. 1803.01866)
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Freezing-in dark matter through a heavy invisible Z 0

Gautam Bhattacharyyaa,⇤ Máıra Dutrab,† Yann Mambrinib,‡ Mathias Pierreb§
a Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India

b Laboratoire de Physique Théorique (UMR8627), CNRS,
Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

We demonstrate that in a class of U(1)0 extension of the Standard Model (SM), under which all
the SM matter fields are uncharged and the additional neutral gauge boson Z

0 couples to a set of
heavy nonstandard fermions, dark matter (DM) production mediated by Z

0 can proceed through the
generation of Generalized Chern-Simons (GCS) couplings. The origin of the GCS-terms is intimately
connected to the cancellation of gauge anomalies. We show that the DM production cross section
triggered by GCS-couplings is su�cient even for an intermediate scale Z

0. A large range of DM
and Z

0 masses is then allowed for reasonably high reheating temperature (TRH & 1010 GeV). This
type of scenario opens up a new paradigm for unified models. We also study the UV completion
of such e↵ective field theory (EFT) constructions, augmenting it by a heavy fermionic spectrum.
The latter, when integrated out, generates the GCS-like terms and provides a new portal to the
dark sector. Presence of a number of derivative couplings in the GCS-like operators induces a high
temperature dependence to the DM production rate. The mechanism has novel consequences and
leads to a new reheating dependence of the relic abundance.

I. INTRODUCTION

In spite of a lot of speculations about its origin, dark
matter (DM) still remains an enigma, and the best we
can do is to assume that it has a particle physics ori-
gin in the domain of natural extension of the Standard
Model (SM). However, the twin pressure of the clear exis-
tence of DM in the energy budget of the universe [1] and
simultaneously the lack of any DM signal in direct detec-
tion experiments XENON [2], LUX [3] and PANDAX [4]
pushes the limits on weakly interacting massive particles
(WIMPs) towards unnatural corners of the parameter
space. Simplest extensions as Higgs-portal [5], Z-portal
[6], or even Z 0-portal [7] are now severely constrained (for
a review on WIMP searches and supporting models, see
[8]). This scenario motivates the assumption that the in-
teractions between the dark and visible sectors are even
weaker, leading to an out-of-equilibrium production of
feebly interacting massive particles (FIMPs) [9] (see [10]
for a review).

On the other hand, theoretical considerations ranging
from neutrino mass generation mechanisms to Grand
Unified Theories (GUT), as well as inflation, reheat-
ing, leptogenesis, or Higgs stability, all hint towards
the existence of an intermediate scale between 1010 and
1016 GeV. In order to interpret the absence of DM sig-
nals, instead of invoking unnatural weak coupling to the
SM particles, one could explain its secluded nature by
suppressions arising from the high mass scale of the me-
diators involved in its interaction with the thermal bath.
Concrete realizations for the high energy physics origin of
the freeze-in mechanism involve Planck suppressed por-
tals which could be embedded in quantum theories of

gravity [11, 12], the left-right symmetric model [13] and
Z 0 mediators in the SO(10) framework [14, 15].

In usual Z 0-mediated constructions, the SM particles are
charged under the new gauge group U(1)0. An interest-
ing question, therefore, is to ask if the DM production
processes are still e�cient even if the SM is uncharged
under U(1)0. To generate the e↵ective interaction of the
associated gauge boson Z 0 with the SM fields, we would
need a set of nonstandard fermions charged under U(1)0

as well as under the SM gauge group(s). Such set-up is
quite common in string constructions, or in E6 models.
In this case, e↵ective interactions of the type represented
by the following Lagrangian

L � � ✏µ⌫⇢�Z 0
µA⌫F⇢� , (1)

where F⇢� = @⇢A� � @�A⇢, arise from diagrams leading
to anomalies (à la Green-Schwarz in string models, or
Peccei-Quinn in the presence of axionic couplings). The
gauge boson A in the above expression may be the SM
hypercharge gauge boson, or could even be any other
nonstandard U(1) gauge boson.

Such terms, characterized by the presence of three gauge
bosons and one derivative, are dubbed as Generalized
Chern-Simons (GCS) terms [16]. This operator can be
generated at the dimension-4 level as a low energy ef-
fective term by integrating out a set of heavy fermions.
The e↵ective coupling � is independent of the heavy
fermion masses, and hence its e↵ect does not decouple
by increasing those fermion masses. The underlying dy-
namics behind this apparent non-decoupling is that this
term is gauge non-invariant, but its gauge variation can-
cels some triangle anomalies from some lighter fermions
still persisting in the theory. On the other hand, when
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In the unitary gauge, the term related to the Z 0-SM-SM
vertex can be extracted from Eq.(3) as

L =
g̃

M2
@↵Z 0

↵✏µ⌫⇢�@µAa
⌫@⇢A

a
� , (4)

where Aa are the SM gauge bosons. From now on, with-
out any loss of generality, we consider the gluons as the
gauge bosons appearing in Eq. (4), and define 1

⇤2 ⌘
g̃

M2

as the results would be exactly the same with electroweak
gauge bosons, just by rescaling the couplings. We con-
sider the heavy fermions generating the GCS couplings
to be charged under SU(3)C so that they dominate the
production process2. With this approach, the relevant
Lagrangian would then read [22]

Le↵ =
1

⇤2
@↵Z 0

↵✏µ⌫⇢�Tr[Ga
µ⌫G

a
⇢�] + L

i
DM

, (5)

where L
i
DM

represents the interactions between the Z 0

and the DM candidate, which can be fermionic (�), or
vectorial of abelian (X1) or non-abelian (XN ) types. The
respective Lagrangians are given by3:

L
�
DM

= ↵ �̄�µ�5�Z 0
µ, (6)

L
X1

DM
= � ✏µ⌫⇢�Z 0µX⌫

1
X⇢�

1
, (7)

and

L
XN
DM = � @↵Z 0

↵✏µ⌫⇢�Tr[Xµ⌫
N X⇢�

N ]. (8)

III. RESULTS

The evolution of dark matter number density nDM is gov-
erned by the Boltzmann equation

dnDM

dt
= �3H(T )nDM + R(T ), (9)

where H (T ) is the Hubble expansion rate and R(T ) is the
temperature dependent interaction rate. In the regime
where the abundance of dark matter is much smaller
than the abundance of particles in the thermal bath, the
back-reaction term in the rate (dark matter producing
standard particles) may be neglected, which is usually
the case in the freeze-in mechanism4.

2 Considering fermions without hypercharge Y leads to a simplifi-
cation as kinetic mixing of the type � Z

0
µ⌫B

µ⌫ can be avoided.
E↵ects of such mixing have been extensively studied in the liter-
ature [24]

3 Only axial coupling is present for the fermionic dark matter.
The derivative @

↵ before Z
0
↵ in Eq. (4) ensures that the vector

coupling do not contribute in a GG ! �� process.
4 The correct amount of dark matter is generated in a regime where

nDM ⌧ nSM, since
⌦0

DM
h
2

0.12 ⇠ YDM

10�10

mDM

GeV and YDM / nDM/nSM.

FIG. 1: Production of dark matter through gluon fusion in
the early Universe

In our set-up, the freeze-in occurs through the process
depicted in Fig. 1. For a 1 + 2 ! 3 + 4 process the
rate can be written as R(T ) = n2

sm
h�vi where nsm is the

number density of SM species and h�vi is the thermal
averaged production cross-section. For a dark matter
particle i, the rate reads

R(T ) =

Z
f1f2

E1E2dE1dE2 d cos ✓12
1024⇡6

Z
|M|

2

id⌦13 ,

(10)

with E1,2 and f1,2 as the energy and the distribution
function of the initial SM particles, ✓12 as the angle be-
tween them, and d⌦13 being the solid angle between the
particles 1 and 3.

For the fermionic dark matter case,

Z
|M|

2

� d⌦13 = 210⇡
↵2

⇤4

m2

�

M4

Z0

s3(s � M2

Z0)2

(s � M2

Z0)2 + M2

Z0�2

Z0

⇡ 210⇡
↵2

⇤4

m2

�

M4

Z0
s3

(11)

For the abelian dark matter case,

Z
|M|

2

X1
d⌦13 = 210⇡

�2

⇤4

s3

M4

Z0

(s � 4m2

X1
)(s � M2

Z0)2

(s � M2

Z0)2 + M2

Z0�2

Z0

⇡ 210⇡
�2

⇤4

1

M4

Z0
s4

(12)

For the non-abelian dark matter case,

Z
|M|

2

XN
d⌦13 = 212⇡

�2

⇤4

s5

M4

Z0

(s � 4m2

XN
)(s � M2

Z0)2

(s � M2

Z0)2 + M2

Z0�2

Z0

⇡ 212⇡
�2

⇤4

1

M4

Z0
s6

(13)

Above, �Z0 is the total width of Z 0 (see the Appendix
for details), s is the center-of-mass energy squared, and
m�, mX1

, mXN
and MZ0 are the three types of dark mat-

ter and Z 0 masses, respectively. Note that we recover the
Landau-Yang e↵ect in the above expressions, though the
pole-enhancement studied in [11] is not present in our

6

right amount of relic abundance [1] is obtained (in the
fermionic case) for m� = 106 GeV, TRH = 1010 GeV,
MZ0 = 1011 GeV and ⇤ ' 8 ⇥ 1012 GeV, in perfect
agreement with Fig. 3. The slopes of the curves depicted
in Fig. 3 correspond also perfectly with the ones pre-
dicted by our analytical solution in Eq. (17): it follows a

line ⇤ / m3/4
DM (m1/4

DM , m1/8
DM ) for fermionic (abelian, non-

abelian) for mDM < TMAX.

Without entering too much into details, there is an in-
teresting feature in the change of slope between TRH and
TMAX in the fermionic dark matter case. This is a novel
feature that was not treated in [20] or [11]. Indeed, in
the case where dark matter is heavier than TRH there is
still a possibility to produce it as long as mDM . TMAX. If
the temperature dependence of the rate is small enough
(fermionic case), most of the DM density is produced at
the lowest scale available and we notice a change of slope
in the curve giving the correct relic density. It is worth
commenting that, due to statistical distribution, the pro-
duction rate does not vanish completely when T . mDM,
which explains why the DM production window is still
open when mDM > TMAX

7. Therefore in this regime
a small e↵ective scale ⇤ is required to compensate the
thermal suppression of the rate, as one can see in the
Fig.3.

Moreover, a quick look at Fig.3 shows to what extent the
allowed parameter space is technically natural. Indeed,
for a very large range of the DM mass, from O(TeV)
to TRH, values of the BSM scale ⇤ ranges from TRH to
GUT/string scale and can still populate the Universe
with the correct relic abundance. This means that heavy
spectrum of masses above the reheating temperature TRH

generates naturally small couplings of an invisible Z 0

to the SM bath to satisfy the cosmological constraints
through the freeze-in process. This constitutes one of
the most important observations of our work.

IV. TOWARDS A MICROSCOPIC APPROACH

As mentioned earlier, we consider processes happening at
a temperature below the U(1)0 phase transition scale. We
have also assumed that the radial component of the com-
plex scalar that breaks U(1)0 is way too heavy compared
to the corresponding VEV (V ). Then Z 0 is primarily
longitudinal absorbing the axion field (a), and the e↵ec-
tive Lagrangian containing Z 0 realizes the gauge sym-
metry non-linearly à la Stueckelberg. Now, we attempt

7 The corresponding region of parameter space as shown in Fig. 3
is quantitatively less precise as the EFT approach becomes less
reliable.

FIG. 4: Triangle diagram generated containing heavy chiral
fermions  i (left panel), and the resulting e↵ective vertex at

low energy (right panel).

to look deep inside the e↵ective GCS vertices search-
ing for microscopic details. Importantly, the masses of
the loop fermions ( ) generating the GCS couplings, as
shown in Fig. 4, must be invariant both under the SM
and the U(1)0 gauge symmetries to ensure that the in-
duced low energy GCS operators are gauge invariant.
One can, in fact, write the microscopic (gauge invari-
ant) Lagrangian introducing pairs of heavy fermions ( )
which are vector-like with respect to the SM group, but
necessarily chiral under U(1)0. This generates the follow-
ing e↵ective Lagrangian (5) at energies below the U(1)0

breaking scale:

L =LSM +
1

2
(@µa � MZ0Z 0

µ)2 � Mi  
i
Lei(qL�qR)

a
V  i

R

+ i 
i
L�µ(@µ � i

g̃

2
qiLZ 0

µ) i
L + i 

i
R�µ(@µ � i

g̃

2
qiRZ 0

µ) i
R

(19)

which is manifestly invariant under the (non-linear) U(1)0

transformation of parameter ↵

 i
R !  i

Rei
g̃
2
qR↵ ;  i

L !  i
Lei

g̃
2
qL↵

Z 0
µ ! Z 0

µ + @µ↵ ; a ! a +
g̃

2
V ↵ ⌘ a + MZ0 ↵

From the Lagrangian in Eq. (19), we compute the tri-
angle loops shown in Fig. 4 and integrate out the heavy
fermions. We then obtain the same e↵ective Lagrangian
as in Eq. (5), but now we can express the e↵ective cou-
pling of the dimension-6 Lagrangian in terms of the pa-
rameters of the microscopical theory. In agreement with
[22], we obtain

Lloop =
1

⇤2

loop

@↵Z 0
↵✏µ⌫⇢�Tr[Ga

µ⌫G
a
⇢�], (20)

with

1

⇤2

loop

=
g2
3

g̃

96⇡2

X

i

qiL � qiR
M2

 i

Tr[T aT a]. (21)

Defining for simplicity
P

i
qiL�qiR
M2

 i

Tr[T aT a] = N Q 
M2

 

(which corresponds to a set of N fermions of e↵ec-
tive charges Q and masses M ) we obtain ⇤loop '

4

case. Note also that the vectorial nature of the medi-
ator has specific characteristics that we do not observe
for other type of mediators. Importantly, we notice that
once the pole is reached (s = M2

Z0), the production rate
vanishes exactly – see Eqs. (11, 12, 13). This is expected
following the Landau-Yang theorem, which states that
a massive spin-1 particle cannot decay into two mass-
less spin-1 fields. This behavior is opposite to traditional
freeze-in scenario where, on the contrary, the majority
of dark matter is produced when the temperature of the
thermal bath reaches T ⇠ MZ0 [11, 25].

We have integrated numerically the production rate,
Eq. (10), considering the Bose-Einstein distributions of
the gluons and the exact squared amplitudes of our
three dark matter candidates. Our result is depicted in
Fig.2.

We can obtain analytical approximations for the rates by
assuming �Z0 ⌧ MZ0 and m2

DM
⌧ s:

R(T ) ⇡

8
>>>>>>>>><

>>>>>>>>>:

2 ⇥ 102
↵2

⇤4

m2

�

M4

Z0
T 10 (fermionic DM)

104
�2

⇤4M4

Z0
T 12 (abelian DM)

2 ⇥ 109
�2

⇤4M4

Z0
T 16 (non-abelian DM)

(14)

We also show in Fig. 2 our approximate solutions. In the
inset of the figure, we show when they depart from the
exact solutions. We can distinguish two regimes where
the approximations fail. First, let us consider when the
temperature of the thermal bath is close to the mediator
mass. In this case, the exact solutions are smaller than
the approximate results as an e↵ect of the non-vanishing
mediator decay width. Even though the departure from
approximations is small in this case, it carries a special
feature of our set-up, emerging from the consequence
of the Landau-Yang theorem in a thermal bath of glu-
ons. The significant departure from approximations oc-
curs at large x ⌘ MZ0/T , due to a threshold e↵ect, as
for T ⌧ mDM the production rate is exponentially sup-
pressed because only the high-energy tail of the initial
states distribution function have su�cient energy to pro-
duce a DM pair, an e↵ect which is not encapsulated in
the analytical approximations.

Another typical characteristics of a longitudinal (‘would-
be Goldstone’) mediator appears in the generic expres-
sion for the rate. Indeed, the ‘light’ mediator regime
(MZ0 ⌧ TRH), and the ‘heavy’ mediator regime (MZ0 �

TRH) give the same dependence of the rate R(T ) on MZ0 ,
and thus on temperature for a given nature of dark mat-
ter, as one can see from the Eq. (14) and Fig. 2. In fact,
there exists only one main regime, independent of the

FIG. 2: Rates for the fermionic, abelian and non-abelian
DM (orange, green and blue lines, respectively). Solid lines
represent the exact numerical computation while dashed lines
represent the approximated results based on Eqs. (14). We
fix N = Q = 1 and m = 0.4 M

Z
0 and TMAX = 100 TRH

for illustrative purposes.

mass of the Z 0 mediator5 for which the slope of the rate
is constant until T ⇠ mDM.

This can be understood by noting that only the longitu-
dinal mode of Z 0 is exchanged, and hence it cannot feel
any pole e↵ect. The longitudinal component has its ori-
gin in the Goldstone mode of a non-linear sigma model.
The behavior of the amplitude squared is dominated by
a term proportional to powers of 1/MZ0 . This happens
because the Goldstone, which is the dominant mode ex-
changed in the DM production process, carries the 1/V
factor arising from U(1)0 breaking. This is similar to the
gravitino production in supergravity where the longitu-
dinal mode, carrying a factor 1/m3/2 (m3/2 being the
gravitino mass), is generated in high scale supersymmet-
ric scenario as was shown in [21].

Dark matter freeze-in

For instantaneous reheating, the universe is domi-
nated by radiation and entropy is conserved. In this
case,

d

dt
= �H(T )T

d

dT
, with H(T ) =

r
ge
90

⇡
T 2

MP
(15)

5 This is in contrast with what has been observed in [11] for spin-2
mediator.

⟨σv⟩n2
γ = → n = 6

→ n = 4

→ n = 10

Marcos A. G. García. DSU 29/06/2018 10/11



Conclusion

• UV-dominated freeze-in during reheating is realized for σ(s) ∼ sn/2, n > 2

• Thermalization time-scale determines the DM abundance at late times

• Effect important for DM production in very high scale susy models, or for heavy
spin-2 mediators. Other models?

• Preheating? Neff ?
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