
BOINC II

Nicolas Maire, Swiss Tropical Institute

with Christian Ulrik Søttrup, Niels Bohr Institute

Overview BOINC II

● BOINC architecture
● BOINC Client

− Core client and manager
− BOINC API

● Server architecture
− DB
− Daemons and tasks
− Project directory structure
− Templates
− Configuration
− Some examples from malariacontrol.net

● Client-Server interaction
− Scheduling server protocol

● Server deployment

Architecture

Client

● Project-independent
● Communicates with the project server(s)
● Download and upload of data
● Update of science application
● Launches and monitors the science app

● Note: New BOINC API separates screensaver into
separate program

BOINC-API

● For science applications to communicate with
the core client (project independent client)

● The BOINC API is a set of C++ functions.
● Not covered here: Graphics-API

Initialization and termination

● int boinc_init();
− Call before any other BOINC functions
− Several initialization tasks, e.g. parse
init_data.xml

● int boinc_finish(int status);
− Call after science application terminates
− Let the BOINC client know we’re done, and if
we’ve succeeded

Resolving file names

● int boinc_resolve_filename(
char *logical_name, char *physical_name,
int len);

● convert logical file names to physical names
− Logical name: the name by which the science application will
refer to the file

− Physical name: unique identifier for the file

Checkpointing

● Write the state of the job to disk, in order not start
from scratch if the computation is interrupted

● int boinc_time_to_checkpoint();
− Checkpointing frequency is a user preference
− Science application ask BOINC if it’s time for a
checkpoint at a suitable place

− Checkpoint immediately if returns non-zero (true)

● void boinc_checkpoint_completed();
− Tell BOINC we have checkpointed, to reset the
timer to the next checkpoint

Reporting progress

● boinc_fraction_done(double
fraction_done);

● The client GUI displays percent done of a running
workunit

● The user can see that the workunit is running ok
● The malariacontrol science application updates this
after each completed 5-day time step with the
proportion of competed simulation steps

Legacy applications

• Not possible to use BOINC API

– No source code

– But also if language does not allow C-calls

– Or simply no resources for SW-development

• Possible to run under BOINC using the “wrapper

approach”

• The wrapper handles communication with the core

client, and runs science application as a subprocess

Database I

● BOINC stores state information in a mysql
database
− platform

● Compilation targets of the core client and/or
applications.

− app
● Applications. A project can run several science
applications

− app_version
● Versions of applications. Includes URL, and MD5
checksum.

− user
● including email, name, web password, authenticator.

Database II

− host
● OS, CPU, RAM, userid,reliability

− workunit
● Contains input file descriptions. Includes counts of the
number of results linked to this workunit, and the
numbers that have been sent, that have succeeded,
and that have failed.

− result
● Includes state and a number of items relevant only
after the result has been returned: CPU time, exit
status, and validation status.

● Web-interface related tables

Scheduler

● The scheduler is a cgi script that is contacted by the
client.

● By default, a new instance is spawned for each
connection (but can use fast CGI).

● The instance will then find an available job and give
it to the client.

● The scheduler can run on its own machine

Feeder

● The Feeder takes jobs (results) ready for execution
and places them in a queue in memory.

● This queue is used by the scheduler.
● More efficient than letting each scheduler instance
create a database connection.

● Feeder return jobs arbitrarily but generally with
increasing id.

● Prioritization of workunits and weighting of
applications is possible

Transitioner

● Takes care of state transition for WUs.
− Create results from WUs.

● Newly created WUs
● Timed-out results

− Flags results for:
● Validation
● Assimilation
● Deletion

● Can be split into many instances, each taking care
of a subset of Wus. This also goes for most other
daemons.

Validator

● Validates results
− Once enough (configurable) have been marked with
NEED_VALIDATE by the transitioner.

− Validator compares the results using a project supplied
algorithm.

● complete binary equality
● One that compares only parts of the results and 5% discrepancy
in those parts.

− This means that you may have to write your own
validator, i.e. you must decide what is a valid result.

● Chooses canonical result and grants credits
− Credit granting algorithm can also be supplied.

Assimilator

● The assimilator must also be supplied by the
project.

● It must process the canonical result.
− Could copy result to a result database
− Could extract data from result and do calculation based
on that

− Could even generate new jobs based on data from result

● Mark results as assimilated

File deleter

● Once a job is done and the WU has been
marked as ready for deletion, the file deleter will
delete all input and result files from that WU on
the server.

● Option to: preserve_wu_files,
preserve_result_files

DB purger

● This daemon will move database entries that are
old and no longer needed to an XML storage file.

● This clears up the result and workunit tables that
could otherwise easily become so big they could
not fit in RAM.

● Projects typically keep results at least a few days in
the DB, so that users have a record of their recent
contribution

Project directory structure I

● Apps
− Contains applications(boinc clients, your science
application)

● Bin
− Boinc executables

● Cgi-bin
− Scheduler and file upload handler

● Download
− Input data and programs

● Upload
− Result data

Project directory structure II

● Html
− Project website and administration website

● log_servername
− Logs for BOINC and project-specific daemons and
tasks

● pid_servername
− Lock files for daemons

● Templates
− Templates for workunits and result xml templates

config.xml

● Main project configuration file
● Options for disabling account creation, max wu per
host per day, one result per user per WU, and many
more

● Project specific tasks can be setup to be run by the
main daemon

<boinc>

<config> [configuration options] </config>

<daemons> [list of daemons] </daemons>

<tasks> [list of periodic tasks] </tasks>

</boinc>

Generating work

● Write XML 'template files' that describe the job's
input and outputs. Example templates follow later
on.

● Create the job's input file(s)
● Invoke a BOINC function or script that submits the
job

_ _ _

_ _
_ _ _

_ _

A BOINC project example:
malariacontrol.net

Measured input data

Observed outcomes

Measure of goodness

of fit

Resample

parameters

Proposal for model

parameterization

Predicted outcomes

Convergence

Validator daemon

● Validate incoming results against others of the same
workunit

● Grant credit
● Projects use the BOINC supplied C code and
implement compare_results and
compute_granted_credit functions

● Here we use the BOINC-provided
sample_bitwise_validator

Assimilator daemon

● Processes validated results
● Reads the simulation output file
● Compares the predictions with the corresponding
field data

● Computes a measure of fit
● Creates new work if necessary

− Sample a new model parameterization and store it to the
backend database

− Based on the completed parameterizations in the
backend database

− Create workunit files, copy them to the download directory
and all create_work to add to the BOINC database

mcdn config.xml

<boinc>

<config>

<one_result_per_user_per_wu>1</one_result_per_user_per_wu>

…

<tasks>

<task>

<cmd>

generator -db_name malariaModel -template_name

../templates/generator_template.xml -d 3

</cmd>

<period>1 min</period>

</task>

</tasks>

<daemons>

<daemon>

<cmd>validator -d 3 -app malariacontrol</cmd>

</daemon>

…..

</daemons>

</boinc>

Templates I: Input template

● Input file references
● Workunit attributes

<file_info>

<number>0</number>

</file_info>

<workunit>

<file_ref>

<file_number>0</file_number>

<open_name>scenario.xml</open_name>

</file_ref>

<min_quorum>2</min_quorum>

<rsc_fpops_bound>120000000000000.0</rsc_fpops_bound>

<rsc_fpops_est>10000000000000</rsc_fpops_est>

<delay_bound>300000</delay_bound>

<max_error_results>5</max_error_results>

</workunit>

Templates II: Output template

● Definition of output files and the way they are
referenced

<file_info>

<name><OUTFILE_0/></name>

<generated_locally/>

<max_nbytes>10000000</max_nbytes>

<url><UPLOAD_URL/></url>

</file_info>

<result>

<file_ref>

<file_name><OUTFILE_0/></file_name>

<open_name>output.txt</open_name>

</file_ref>

</result>

Architecture

Client-Server interaction

Client-Server interaction

● Communication via http
● Scheduling server protocol:
● Client sends scheduler_request_X.xml
● Server replies with scheduler_reply xml
● Example request (fragment):

<scheduler_request>
<hostid>146</hostid>
<core_client_major_version>5</core_client_major_version>
<core_client_minor_version>10</core_client_minor_version>
<work_req_seconds>234</work_req_seconds>

<global_preferences> ………….. </global_preferences>
<result>
<name>uc_1192745072_44_0</name>
<final_cpu_time>9.890625</final_cpu_time>
<exit_status>0</exit_status>
<platform>windows_intelx86</platform>
……..

</result>
……...

</scheduler_request>

Server setup

● There is no official RPM or other package for the
server
− There are privately developed ones. CERN has one for
scientific linux.

● By now installing a server works well on a range of
Linux distributions and is well documented

● Many people have published guides and how-tos
● Use the resources shown at the end of the
presentation

Prerequisites

● See Boinc website for latest list.
● Gnutools

− Gcc, make, autoconf, automake ...

● MySQL
− Server and client

● Python
− MySQL and XML extensions

● Apache
− Mod_ssl and PHP

● Openssl
− v0.9.8+

Building

● Get the source from SVN repository
− svn co http://boinc.berkeley.edu/svn/trunk/boinc

● Build it
− ./_autosetup
− ./configure

● --disable-client

− ./make
− ./Make install

Installation

● Make sure that all prerequisites (apache, mysql, php,
etc) are configured correctly.

● Create keys for uploads and downloads (code),
preferably not on the server
− Store the private key somewhere safe

BOINC Server VM

● VMWare image available: boinc.berkeley.edu
● Comes with all prerequisites
● See Hands-on

● Outlook: Amazon Computing Cloud VM

Installation

● Run the make_project project script.
− --project_root <path>
− --db_user <database_user>
− --db_passwd <database_password>
− --key_dir <key_directory>
− --url_base <url_base>
− (--drop_db_first, --delete_prev_inst)

● Optional, used to clean up previous installs.

− <short_name> <long_name>

● This creates the DB, directory structure, BOINC-
generic daemons and tasks, web-app

● Also some configuration files with sensible defaults

Website and forum

● Start by password protecting the html/ops/
administration interface pages.
− Either with .htaccess or apache.conf file approach

● Edit html/project/project.inc
− Change data to fit with your project

● Css file in html/user/ can be customized.
● Edit html/ops/create_forums.php

− Decide what forums are needed/wanted.
− Run it.

Final steps

● Add application and workunits
● Write and install your own assimilator and validator
● Start the server

− bin/start from the project directory.

Administration

● The admin web pages
− Grants access to a load of statistics and status
information

● Users
● Hosts
● Applications
● WU and results
● more

● BOINC logs
● Custom logs
● BOINC DB for comprehensive state information and
manipulation

BOINC resources

● BOINC website: http://boinc.berkeley.edu/
− Source code
− Documentation
− Forums

● BOINC email lists:
− boinc_projects for project admins
− boinc_dev for boinc developers

● http://wiki.aims.ac.za/mediawiki/index.php/AIMS_w
orkshop_on_Volunteer_Computing

● Project forums
● nicolas.maire@unibas.ch

