BOINC i

Nicolas Maire, Swiss Tropical Institute

with Christian Ulrik Sottrup, Niels Bohr Institute

Overview BOINC i

BOINC architecture
BOINC Client

- Core client and manager
- BOINC API

Server architecture

- DB

- Daemons and tasks

- Project directory structure

- Templates

- Configuration

- Some examples from malariacontrol.net

Client-Server interaction
- Scheduling server protocol

Server deployment

Architecture

Legend

BOINC Components

Project spedific Components

Project Back-end

BOINC Back-end Interface

-

Project
Sdencea
Database

F
A BOINC
Powered
Project
- Project
BOINEC Database
Database i
BOINC Server Complex Web Server
¥ 1 BOINC Web Pages
Data Schedulin ¥
SEerveris) Serveris Project Web Pages
F F 3
Participant
F
=d Applicat
cence Applicaton Paricipants
API SCreen-Saver Computer
¥ ¥

BOIMNC Daeman

¥

Screen-Saver Engine

- - EOIMNC Manager

BOINC Software

Client

. Project-independent

. Communicates with the project server(s)
. Download and upload of data

. Update of science application

. Launches and monitors the science app

Scence Applicaton

API soeen-sSaver

i

BOINC Dasmon Y « p BOINC Manager
Soeen-Saver Engine
BOINC Software

. Note: New BOINC API separates screensaver into
separate program

BOINC-API

. For science applications to communicate with
the core client (project independent client)

. The BOINC APl is a set of C++ functions.

. Not covered here: Graphics-API

Initialization and termination

. int boinc init();
- Call before any other BOINC functions

- Several initialization tasks, e.g. parse
init_data.xml

- int boinc finish(int status);

- Call after science application terminates
- Let the BOINC client know we're done, and if
we’'ve succeeded

I Resolving file names
- 1nt boinc resolve filename (
char *loglcal name, char *physical name,
int len);

. convert logical file names to physical names
- Logical name: the name by which the science application will
refer to the file
- Physical name: unique identifier for the file

Checkpointing

. Write the state of the job to disk, in order not start
from scratch if the computation is interrupted

- int boinc time to checkpoint();

_ Checkpointing frequency is a user preference

- Science application ask BOINC if it's time for a
checkpoint at a suitable place

- Checkpoint immediately if returns non-zero (true)

. void boinc checkpoint completed() ;

- Tell BOINC we have checkpointed, to reset the
timer to the next checkpoint

Reporting progress

- boinc fraction done (double
fraction _done) ;

. The client GUI displays percent done of a running
workunit

. The user can see that the workunit is running ok

. The malariacontrol science application updates this
after each completed 5-day time step with the
proportion of competed simulation steps

Legacy applications

* Not possible to use BOINC API
— No source code
— But also if language does not allow C-calls
— Or simply no resources for SW-development

» Possible to run under BOINC using the “wrapper
approach”

* The wrapper handles communication with the core
client, and runs science application as a subprocess

wrapper.C

BOINC —Pp

care client

Legacy
application

Database |

. BOINC stores state information in a mysq|

database
- platform
. Compilation targets of the core client and/or
applications.
- app
. Applications. A project can run several science
applications
— app_version
. Versions of applications. Includes URL, and MD5
checksum.
- user
. including email, name, web password, authenticator.

Database |l

— host
. OS, CPU, RAM, userid,reliability
— workunit
. Contains input file descriptions. Includes counts of the
number of results linked to this workunit, and the
numbers that have been sent, that have succeeded,
and that have failed.
— result
. Includes state and a number of items relevant only
after the result has been returned: CPU time, exit
status, and validation status.

. Web-interface related tables

Scheduler

. The scheduler is a cgi script that is contacted by the
client.

. By default, a new instance is spawned for each
connection (but can use fast CGl).

. The instance will then find an available job and give
it to the client.

. The scheduler can run on its own machine

Feeder

. The Feeder takes jobs (results) ready for execution
and places them in a queue in memory.

. This queue is used by the scheduler.

. More efficient than letting each scheduler instance
create a database connection.

. Feeder return jobs arbitrarily but generally with
Increasing id.

. Prioritization of workunits and weighting of
applications is possible

I Transitioner

. lakes care of state transition for WUSs.

I — Create results from WUs.

. Newly created WUs
. Timed-out results

- Flags results for:
. Validation
. Assimilation
. Deletion

. Can be split into many instances, each taking care
of a subset of Wus. This also goes for most other
daemons.

I Validator

. Validates results
- Once enough (configurable) have been marked with
I NEED_ VALIDATE by the transitioner.
- Validator compares the results using a project supplied

algorithm.

. complete binary equality
. One that compares only parts of the results and 5% discrepancy

In those parts.
- This means that you may have to write your own
validator, i.e. you must decide what is a valid resuilt.
. Chooses canonical result and grants credits
- Credit granting algorithm can also be supplied.

I Assimilator

project.

. It must process the canonical result.
— Could copy result to a result database

—- Could extract data from result and do calculation based
on that

- Could even generate new jobs based on data from result
. Mark results as assimilated

I . The assimilator must also be supplied by the

File deleter

. Once a job is done and the WU has been
marked as ready for deletion, the file deleter will
delete all input and result files from that WU on
the server.

. Option to: preserve wu_files,

preserve result files

DB purger

. This daemon will move database entries that are

old and no longer needed to an XML storage file.

. This clears up the result and workunit tables that
could otherwise easily become so big they could
not fit in RAM.

. Projects typically keep results at least a few days In
the DB, so that users have a record of their recent
contribution

Project directory structure |

. Apps
- Contains applications(boinc clients, your science
application)

. Bin

- Boinc executables
. Cgi-bin
- Scheduler and file upload handler

. Download

- Input data and programs

. Upload

~ Result data

Project directory structure Il

. Html

- Project website and administration website

. log_servername

- Logs for BOINC and project-specific daemons and
tasks

. pid_servername

- Lock files for daemons

. Templates
- Templates for workunits and result xml templates

config.xml

Main project configuration file

Options for disabling account creation, max wu per
host per day, one result per user per WU, and many
more

Project specific tasks can be setup to be run by the
main daemon

<boinc>

<config> [configuration options] </config>
<daemons> [list of daemons] </daemons>
<tasks> [list of periodic tasks] </tasks>

</boinc>

Generating work

. Write XML 'template files' that describe the job's

iInput and outputs. Example templates follow later
on.

. Create the job's input file(s)

. Invoke a BOINC function or script that submits the
job

I A BOINC project example:
I malariacontrol.net

I I-I_I Measured input data |

Proposal for model
parameterization

/[

>

- L
I-I_I Observed outcomes | I-I_I

Predicted outcomes

H

Measure of goodness

~ Resample
parameters

of fit
'

Convergence

Validator daemon

. Validate incoming results against others of the same
workunit

. Grant credit

. Projects use the BOINC supplied C code and
Implement compare_results and

compute granted_credit functions

. Here we use the BOINC-provided

sample bitwise validator

Assimilator daemon

Processes validated results

Reads the simulation output file

Compares the predictions with the corresponding
field data

Computes a measure of fit

Creates new work if necessary

- Sample a new model parameterization and store it to the
backend database

- Based on the completed parameterizations in the
backend database

- Create workunit files, copy them to the download directory
and all create_work to add to the BOINC database

mcdn config.xml

<boinc>
<config>
<one_result_per_user_per _wu>1</one result _per _user_per wu>

<tasks>
<task>
<cmd>
generator -db_name malariaModel -template_name
..templates/generator_template.xml -d 3
</cmd>
<period>1 min</period>
</task>
</tasks>
<daemons>
<daemon>
<cmd>validator -d 3 -app malariacontrol</cmd>
</daemon>
</daemons>
</boinc>

Templates |: Input template

Input file references
Workunit attributes

<file_info>
<number>0</number>
<[file_info>
<workunit>
<file_ref>
<file_number>0</file_number>
<open_name>scenario.xml</open_name>
<[file_ref>
<min_quorum>2</min_quorum>
<rsc_fpops_bound>120000000000000.0</rsc_fpops_bound>
<rsc_fpops_est>10000000000000</rsc_fpops est>
<delay_bound>300000</delay bound>
<max_error_results>5</max_error_results>
</workunit>

I Templates Il: Output template

. Definition of output files and the way they are

I referenced

<file_info>
<name><OUTFILE_0/></name>
<generated_locally/>
<max_nbytes>10000000</max_nbytes>
<url><UPLOAD_URL/></url>
<[file_info>
<result>
<file_ref>
<file_name><OUTFILE_0/></file_name>
<open_name>output.txt</open_name>
<ffile_ref>
</result>

Architecture

Legend

BOINC Components

Project spedific Components

Project Back-end

BOINC Back-end Interface

-

Project
Sdencea
Database

F
A BOINC
Powered
Project
- Project
BOINEC Database
Database i
BOINC Server Complex Web Server
¥ 1 BOINC Web Pages
Data Schedulin ¥
SEerveris) Serveris Project Web Pages
F F 3
Participant
F
=d Applicat
cence Applicaton Paricipants
API SCreen-Saver Computer
¥ ¥

BOIMNC Daeman

¥

Screen-Saver Engine

- - EOIMNC Manager

BOINC Software

Client-Server interaction

| _ Project servers
1) get instructions

2) download applications and input files

3} compute

4) upload output files

o) report results

Client-Server interaction

Communication via http

Scheduling server protocol:

Client sends scheduler_request X.xml
Server replies with scheduler_reply xml
Example request (fragment):

<scheduler_request>

<hostid>146</hostid>

<core_client_major_ version>5</core_client _major_version>
<core_client_minor_version>10</core_client_minor_version>
<work_req_seconds>234</work_req_seconds>
<global_preferences> </global_preferences>
<result>

<name>uc_1192745072_44 0</name>
<final_cpu_time>9.890625</final_cpu_time>
<exit_status>0</exit_status>

<platform>windows _intelx86</platform>

</scheduler_request>

Server setup

. There is no official RPM or other package for the
server

- There are privately developed ones. CERN has one for
scientific linux.

. By now installing a server works well on a range of
Linux distributions and is well documented
. Many people have published guides and how-tos

. Use the resources shown at the end of the

presentation

I Prerequisites

. Gnutools
- Gcece, make, autoconf, automake ...
. MySQL
— Server and client
. Python
- MySQL and XML extensions
. Apache
- Mod_ssl and PHP

. Openssl
- v0.9.8+

I . See Boinc website for latest list.

I Building

- svn co http://boinc.berkeley.edu/svn/trunk/boinc

. Build it

- ./ _autosetup

- ./configure
. --disable-client

- ./make
— ./Make install

I . Get the source from SVN repository

Installation

. Make sure that all prerequisites (apache, mysaql, php,
etc) are configured correctly.
. Create keys for uploads and downloads (code),

preferably not on the server
- Store the private key somewhere safe

BOINC Server VM

. VMWare image available: boinc.berkeley.edu
. Comes with all prerequisites
. See Hands-on

. Outlook: Amazon Computing Cloud VM

I Installation

- Run the make_project project script.
- --project_root <path>
- --db_user <database user>
- --db_passwd <database password>
- --key dir <key directory>
—- --url_base <url _base>
- (--drop_db _first, --delete_prev_inst)

. Optional, used to clean up previous installs.
<short name> <long_name>

. This creates the DB, directory structure, BOINC-
generic daemons and tasks, web-app
. Also some configuration files with sensible defaults

Website and forum

. Start by password protecting the html/ops/

administration interface pages.
- Either with .htaccess or apache.conf file approach

. Edit html/project/project.inc

- Change data to fit with your project

. Css file in html/user/ can be customized.
. Edit html/ops/create forums.php

- Decide what forums are needed/wanted.
~ Run it.

I Final steps

. Add application and workunits
I . Write and install your own assimilator and validator

. Start the server
- bin/start from the project directory.

Administration

The admin web pages
— Grants access to a load of statistics and status

information
. Users
. Hosts
. Applications
. WU and results
. more

BOINC logs
Custom logs
BOINC DB for comprehensive state information and
manipulation

BOINC resources

. BOINC website: http://boinc.berkeley.edu/

— Source code
— Documentation
— Forums

. BOINC email lists:

- boinc_projects for project admins
- boinc_dev for boinc developers

. http://wiki.aims.ac.za/mediawiki/index.php/AIMS_w

orkshop _on_Volunteer Computing

. Project forums
. hicolas.maire@unibas.ch

