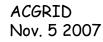


Advanced Computing and GRID Technologies for Research

Denis Perret-Gallix IN2P3/CNR5



IN2P3: Institute of Nuclear and Particule Physics, a CNRS institute

ICT-ASIA network: French sponsored IT programmme: Foreign Affairs Ministry, CNRS, INRIA, GET, ...

Denis Perret-Gallix IN2P3/CNR5

Computing in research

\cdot No scientific research without computing expertise

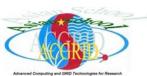
• Experimental design, simulation, experiment construction, data taking, data analysis, model interpretation and theory development

 \rightarrow All these activities need computing support

- •New computing tools are complex and need training
- •ACGRID stands for:

Advanced Computing

·Software engineering: Languages, CASE, Databases,


- •Artificial Intelligence: Symbolic manipulation, Genetic algorithm,
- •Distributed computing: parallelism, cluster, GRID, BOINC

•General purpose Packages: ROOT, GEANT4, TAVERNA

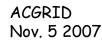
•Grid

- •Hidden computing from distributed resources
- Analog to the electrical power grid

ACGRID Nov. 5 2007

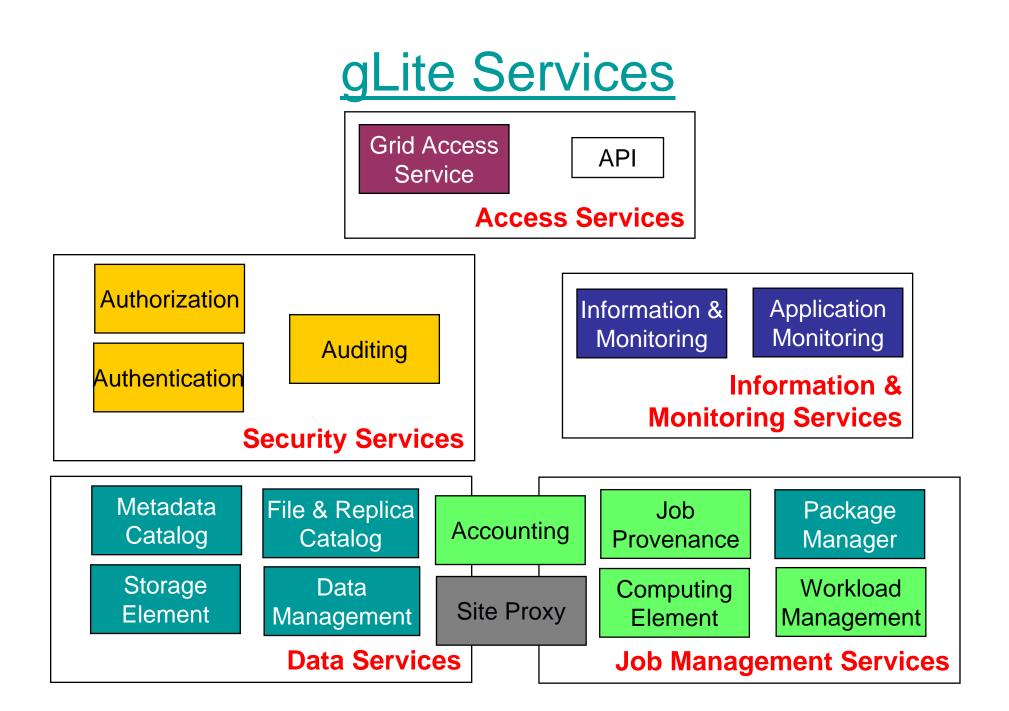
Denis Perret-Gallix IN2P3/CNR5

) Hanoi

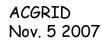


- All you need to use the GRID
- All you need to GRIDify your application

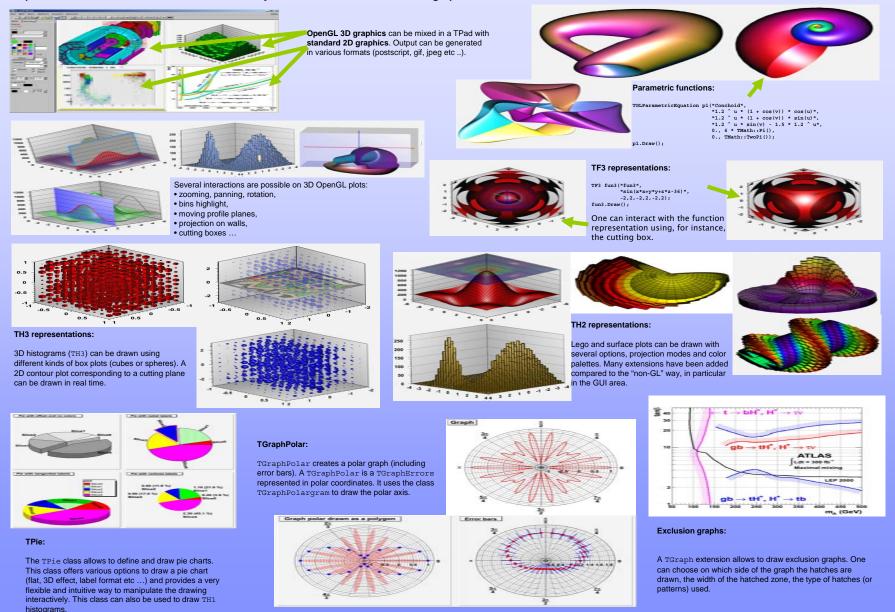
<u>gLite Middleware</u>


- Vincent Breton: Grids: a new paradigm for science
- Jean Salzemann: Embrace: Integrated system for Bioinformatics
- Matthieu Reichstadt: Bioinformatics portal, AuverGrid
- Vincent Bloch: WISDOM: Wide In Silico Docking On Malaria
- Hung-Chun Lee: AMGA: Access Metadata, GANGA: user interface to the GRID

Denis Perret-Gallix IN2P3/CNR5



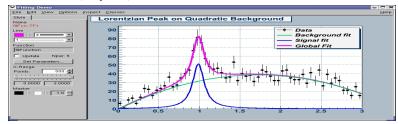
- René BRUN
 - ROOT: Object Oriented Data Analysis Framework
 - physics, astronomy, biology, genetics, finance, insurance, pharmaceuticals, etc.
 - PROOF: Parallel ROOT Facility
- Sébastien Incerti: GEANT4
 - simulation of the passage of particles through matter.
 - high energy, nuclear and accelerator physics, as well as studies in medical and space science
- Georgina Moulton: TAVERNA
 - language and software tools to facilitate easy use of workflow and distributed compute technology within the eScience community
- Nicolas Maire: BOINC Berkeley Open Infrastructure for Network Computing
 - Volunteer computing and desktop grid computing


Denis Perret-Gallix IN2P3/CNRS

ROOT Workshop 2007: Graphics News (2D and 3D)

This poster shows some of the new features recently introduced in ROOT 2D and 3D graphics.

User Interface Classes


The ROOT GUI classes provide a rich and complete set of widgets allowing the construction of modern looking graphical user interfaces.

Like everything else in ROOT the GUI classes are fully cross platform and provide the same look and feel on either X11, Win32 or Mac OS X.

Complex GUI's can easily be constructed using a GUI builder, which allows widgets to be dragged and dropped into frames.

The GUI and the ROOT graphics classes are fully integrated and it is simple to embed a scientific data display into a GUI.

ROOT comes with many examples of high level GUI's like the browser, tree viewer, fit panel, etc.

Fast Prototyping

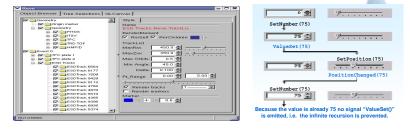
Like all classes in ROOT the GUI classes are fully scriptable allowing for fast prototyping via the embedded CINT C++ interpreter. In addition any GUI can be saved as C++ macro by typing ctrl-s when the mouse is over a GUI window. As macros can be stored in ROOT files one can envisage to store the GUI with the data:

root[] TMacro m("myApplication")
root[] m.ReadFile("myApplication.C")
root[] m.Exec()
root[] TFile f("myFile.root", "recreate")
root[] m.Write()
root[] hpxpy.Write()

Executing the saved macro restores the com	plete applicati
<pre>root[] TFile f("myFile.root")</pre>	or
root[] f.ls()	
TFile** myFile.root	
TFile* myFile.root	
KEY: TMacro myApplication;1	Community Community
KEY: TH2F hpxpy;1 py vs px	
root[] TMacro *d = f.Get("myApplication")	

root[] d.Exec()

ROOT Users Workshop, CERN, March 26-28, 2007

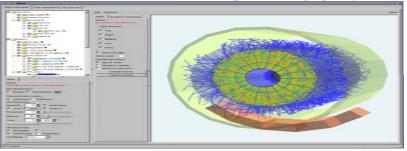

Signals / Slots

Using the signal/slot communication mechanism GUI elements can be easily connected to any number of action (slot) methods.

Signal/slots are integrated into the ROOT core and heavily use CINT to connect the signals to the slots and to call the slot methods when signals are issued.

Name	Fix	Bound	Value	Min	Set Range	Max	Step	Errors
Constant			150.195 🚔	-450.585		450.585	45.0585	2.71935
Mean			4.25162 🚔	-12.7548		12.7548	1.27548 🚔	0.0188027
Sigma			0.95194 🚖	0		6.59472	0.285582 🖨	0.0258449
Immediat	e previe	w				Reset	Apply Q	K <u>Cancel</u>

On interaction, widgets send out various signals. Any public object method can be connected to these signals.



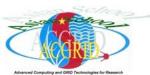
Examples

The ALICE Event Visualization Environment (AliEVE) is based on ROOT and its GUI, 2D/3D graphics classes. A small application kernel provides for registration and management of visualization objects. CINT scripts are used as an extensible mechanism for data extraction, selection and processing as well as for steering of event-related tasks.

AliEVE is used for event visualization in offline and high-level trigger frameworks.

The event below is a simulated peripheral lead-lead collision at 5.5 TeV/nucleon with 2600 reconstructed tracks (pT>100 MeV, |eta| < 1.5)

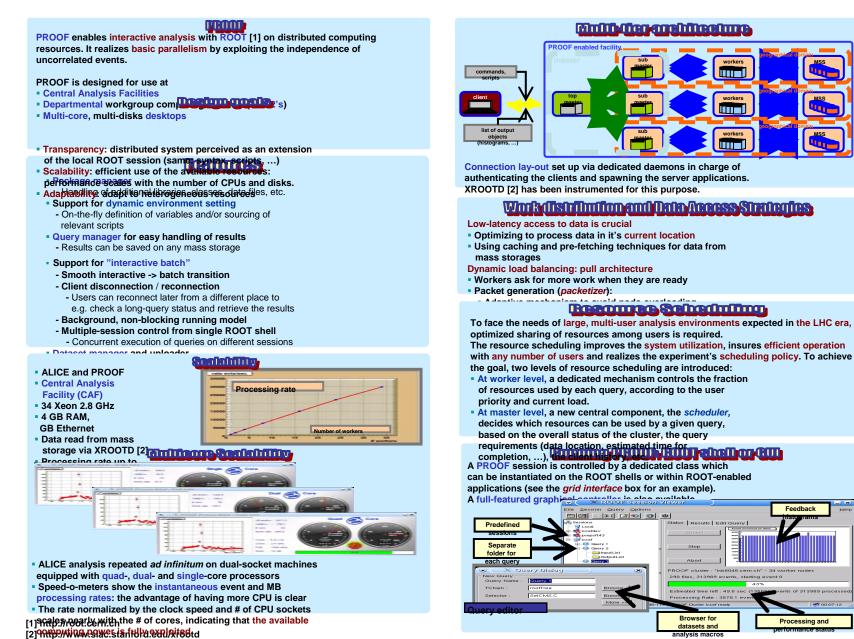
For more information see: <u>http://root.cern.ch</u> For any questions please use the address: <u>rootdev@pcroot.cern.ch</u>



- ROOT: Object Oriented Data Analysis Framework
- physics, astronomy, biology, genetics, finance, insurance, pharmaceuticals, etc.
- PROOF: Parallel ROOT Facility
- Sébastien Incerti: GEANT4
 - simulation of the passage of particles through matter.
 - high energy, nuclear and accelerator physics, as well as studies in medical and space science
- Georgina Moulton: TAVERNA
 - language and software tools to facilitate easy use of workflow and distributed compute technology within the eScience community
- Nicolas Maire: BOINC Berkeley Open Infrastructure for Network Computing
 - Volunteer computing and desktop grid computing

ACGRID Nov. 5 2007

Denis Perret-Gallix IN2P3/CNR5



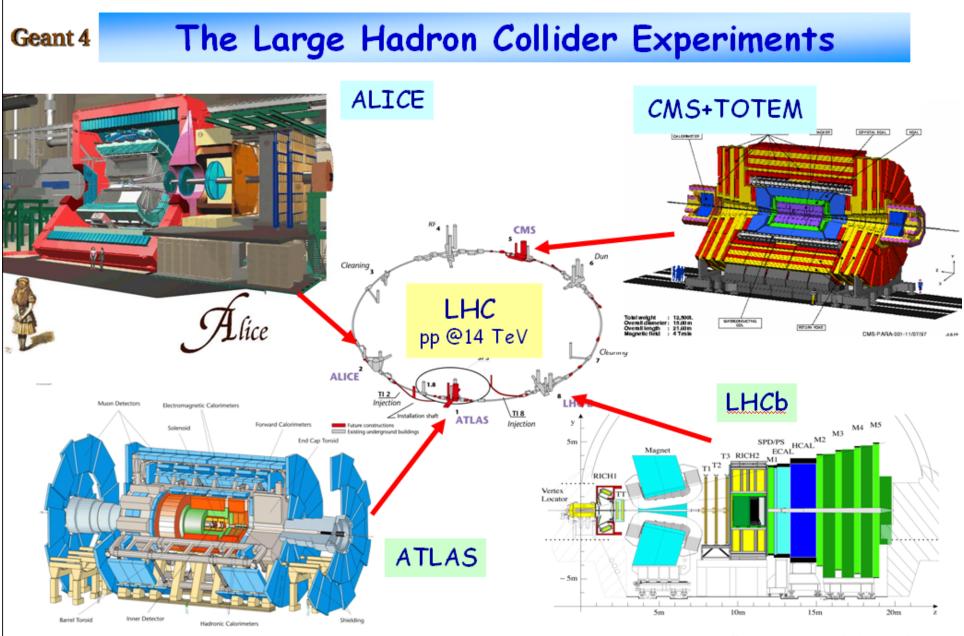
B. Bellenot, R. Brun, G. Ganis, J. Iwaszkiewicz, F. Rademakers, CERN, Geneva. Switzerland.

M. Ballintijn, MIT, Cambridge, MA, USA

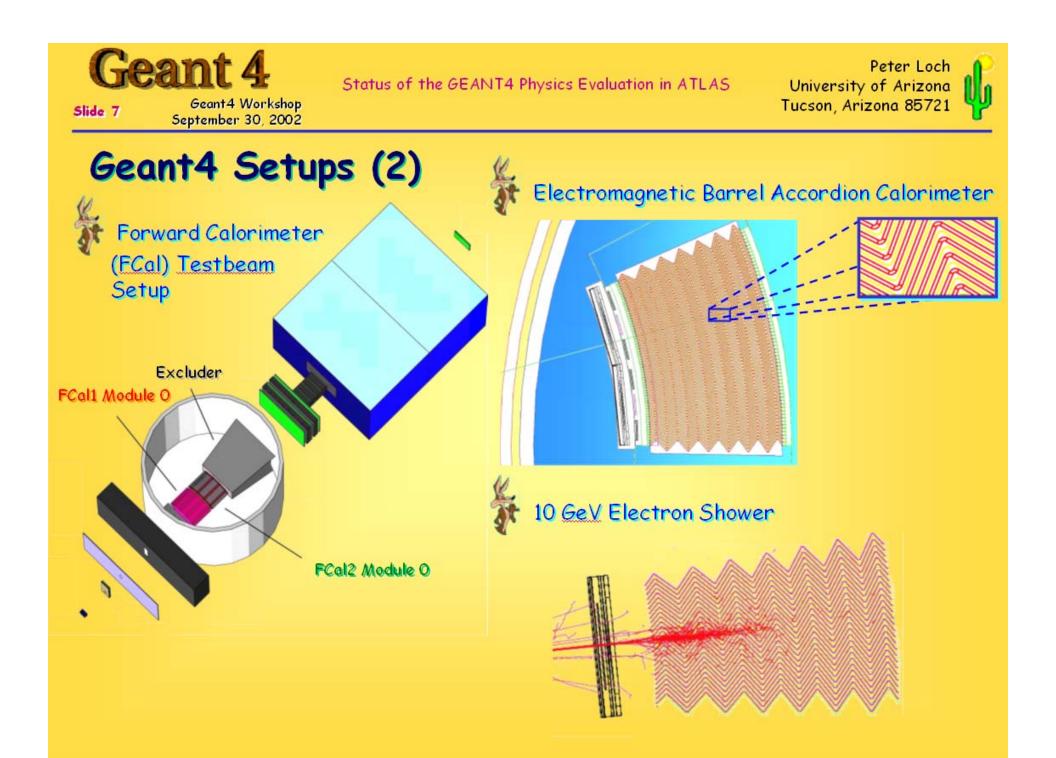
Processing and

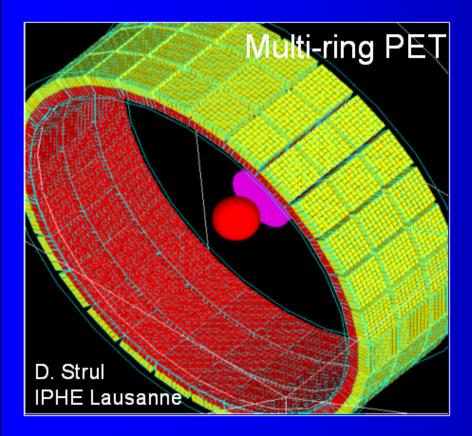
- ROOT: Object Oriented Data Analysis Framework
- physics, astronomy, biology, genetics, finance, insurance, pharmaceuticals, etc.
- PROOF: Parallel ROOT Facility
- Sébastien Incerti: GEANT4
- simulation of the passage of particles through matter.
- high energy, nuclear and accelerator physics, as well as studies in medical and space science
- Georgina Moulton: TAVERNA
 - language and software tools to facilitate easy use of workflow and distributed compute technology within the eScience community
- Nicolas Maire: BOINC Berkeley Open Infrastructure for Network Computing
 - Volunteer computing and desktop grid computing

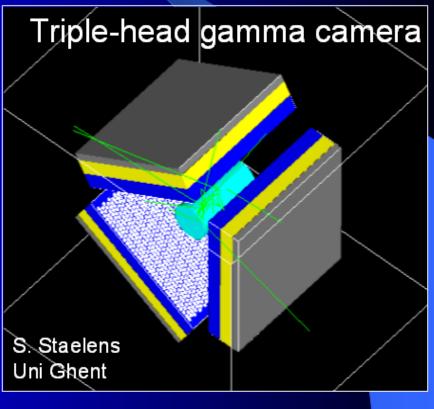
ACGRID Nov. 5 2007

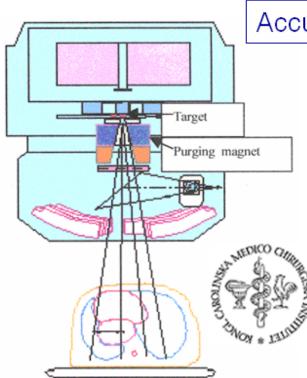


Denis Perret-Gallix IN2P3/CNRS

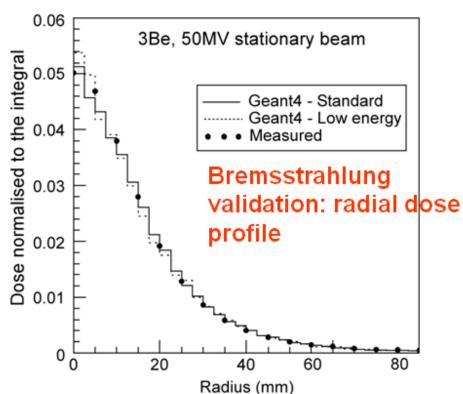





Albert De Roeck (CERN) 2


Geometry examples of GATE applications

Comparison with commercial treatment planning Systems M. C. Lopes ¹, L. Peralta ², P. Rodrigues ², A. Trindade ² ¹ IPOFG-CROC Coimbra Oncological Regional Center - ² LIP - Lisbon CT images used to define the geometry: a thorax slice from a Rando Relative Dose (%) anthropomorphic 120 GEANT4 phantom Experimental Data PLATO 100 120 Relative Dose (%) HELAX-TMS Agreement better than 2% between GEANT4 and TLD dosimeters 80 100 80 60 Radiation Central Axis 9.8 cm de pth 60 40 40GEANT4 20 Experimental Data 5 10 15 25 30 200 PLATO De pth (cm) 20HELAX-TMS 0 -10 10 15 -5 5 -15 Distance to Central Axis (cm)


Simulation of a treatment head

Susanne Larsson, Roger Svensson Irena Gudowska, Björn Andreasen (Karolinska Institutet, Stockholm), Vladimir Ivanchenko (CERN)

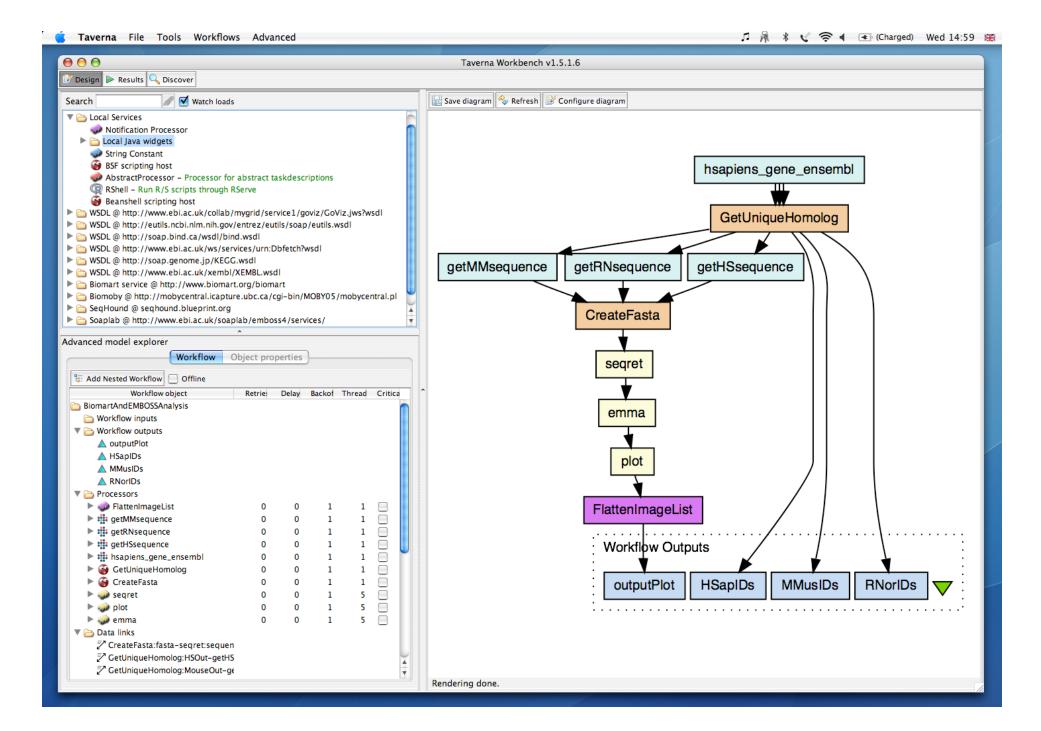
Accuracy in the geometry and magnetic field modeling

- High energy electron beam, 50 MeV
- Target 3 mm Be

Geant 4

- ROOT: Object Oriented Data Analysis Framework
- physics, astronomy, biology, genetics, finance, insurance, pharmaceuticals, etc.
- PROOF: Parallel ROOT Facility
- Sébastien Incerti: GEANT4
 - simulation of the passage of particles through matter.
 - high energy, nuclear and accelerator physics, as well as studies in medical and space science
 - Georgina Moulton: TAVERNA
 - language and software tools to facilitate easy use of workflow and distributed compute technology within the escience community
- Nicolas Maire: BOINC Berkeley Open Infrastructure for Network Computing
 - Volunteer computing and desktop grid computing

ACGRID Nov. 5 2007

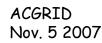


Denis Perret-Gallix IN2P3/CNRS

- ROOT: Object Oriented Data Analysis Framework
- physics, astronomy, biology, genetics, finance, insurance, pharmaceuticals, etc.
- PROOF: Parallel ROOT Facility
- Sébastien Incerti: GEANT4
 - simulation of the passage of particles through matter.
 - high energy, nuclear and accelerator physics, as well as studies in medical and space science
- Georgina Moulton: TAVERNA
 - language and software tools to facilitate easy use of workflow and distributed compute technology within the eScience community
 - Nicolas Maire: BOINC Berkeley Open Infrastructure for Network Computing
 - Volunteer computing and desktop grid computing

ACGRID Nov. 5 2007

Denis Perret-Gallix IN2P3/CNR5



Bobic Jan. 30 2007	Statistic For the WO		• · ·		Find	47 CPU H	8,000 lours/da	,
222 M C		BOINC Stat BOINC Team - " <u>BOINC</u> to leave a comment? G		OINC is "		- 20000 C		time
Project	Develop. Stage	Total Credit	Recent Creait	Users	Teams	Hosts (Computers)	Countries	Data last u
Combined BOINC		22,237,035,221	47,807,355	914,601	57,690	N/A	250	
SETI@Home		12,577,720,601	26,244,800	595,177	46,460	1,310,456	245	23.99 hour
Einstein@Home	-	3,002,622,440	6,634,314	155,311	6,507	329,194	199	4.41 hours
ClimatePrediction.Net	- 1	2,518,092,858	3,615,558	107,421	4,333	199,679	186	14.04 hour
Rosetta@Home	-	1,298,041,671	3,827,521	108,648	4,486	257,858	193	7.10 hour
BC Climate Change Experiment	-	1,259,204,840	2,113,118	120,243	1,169	136,250	103	14.23 hou
World Community Grid		482,513,459	2,570,984	29,618	3,806	80,347	153	6.71 hour
Predictor@Home		420,699,910	0	54,792	2,960	131,867	170	5.13 hour
QMC@Home	Beta	123,901,047	600,501	12,911	913	24,541	125	7.65 hour
LHC@Home		111,322,684	0	33,244	1,992	72,360	141	146,94 da
SIMAP		103,670,942	271,985	14,771	1,084	35,947	132	4.64 hour
MalariaControl.net	Beta	40,258,960	224,416	3,906	453	11,363	95	12.57 hou
<u>TANPAKU</u>	Alpha	39,813,670	233,277	5,496	491	12,306	101	17.98 hou
Seasonal Attribution Project		31,569,611	75,052	4,214	360	5,880	82	13.28 hou
Spinhenge@home	Beta	27,546,204	277,784	10,407	717	16,931	110	8.23 hour
SETI@Home Beta		27,280,277	85,502	3,206	475	7,449	83	4.22 hour
SZTAKI Desktop Grid	-	26,820,789	47,482	10,001	829	39,307	111	11.07 hou
PrimeGrid		26,820,355	120,745	3,365	503	13,142	77	6.31 hour
uFluids	Alpha	23,791,951	81,736	4,913	599	14,902	88	9.48 hour
<u>XtremLab</u>		16,963,176	77,431	2,153	361	6,810	75	5.48 hour
<u>RieselSieve</u>		16,788,081	72,719	3,265	342	6,812	84	6.31 hour
Leiden Classical		13,271,586	59,280	2,468	340	7,135	82	5.22 hour
Proteins@home		9,577,010	208,233	3,414	316	6,068	81	6.57 hour
Rectilinear Crossing Number		9,257,174	78,851	3,517	388	7,860	89	5.15 hour

- Large CPU power: 20,000 CPU full time and growing
- BUT
 - Low reliability: redundant computations
 - •Not for time critical application

Denis Perret-Gallix IN2P3/CNR5

Project name Mouse over for details; click to visit web site	Project I Copy and paste into				
	Biology and Medicine				
http://boinc.bio.wzw.tum.de/b					
Predictor® home	http://predictor.scripps.edu/				
Rosetta® home	http://boinc.bakerlab.org/rosetta/				
Malariacontrol. net	http://www.malariacontrol.net				
Tanpaku	http://issofty17.is.noda.tus.ac.jp/				
World Community Grid	http://www.worldcommunitygrid.org/				
A	stronomy/Physics/Chemistry				
Spinhenge® home	http://spin.fh-bielefeld.de/				
ETI® home http://setiathome.berkeley.edu					
LHC® home http://lhcathome.cern.ch/lhcatl					
Leiden Classical http://boinc.gorlaeus.net/					
uFluids® home	http://www.ufluids.net/				
Einstein® home http://einstein.phys.uwm.edu/					
Quantum Monte Carlo at Home	http://qah.uni-muenster.de/				
	Earth Sciences				
Climateprediction.net	http://climateprediction.net				
Ma	Mathematics and strategy games				
PrimeGrid	http://www.primegrid.com				

Researches using grid

Symposium

Friday 16 November 2007

Symposium: Intoduction and Scientific Applications - IoIT (VAST Campus) (16 November

time	[id] title	presenter
09:00	[4] Opening and welcome (00h10')	Prof. MINH, Chau Van
09:10	[67] Institute of Information Technology and IT in Vietnam (00h30')	Prof. THI, Vu Duc Prof. CHI MAI, Luong
09:40	[10] Research and development cooperation (00h20')	FRENCH EMBASSY AND CNRS
10:00	[7] High Energy Physics physics and the GRID (00h30')	Prof. LE DIBERDER, Francois
10:30	break (00h30')	
11:00	[6] The International Linear Collider project (00h30')	Dr. MIYAMOTO, Akiya
11:30	[15] Astroparticles, Space detectors: JEM-EUSO and the GRID (00h30')	Prof. EBISUZAKI, Toshikazu
12:00	[14] Hot issues in the field of emerging diseases (00h30')	Prof. DUNG, Nguyen Tien
12:30	[66] Bioinformatics Grid-based Applications and IOIT-HCM Grid (00h30')	Prof. LANG, Tran Van Mr. LONG, Do Van


Lunch - IoIT (VAST Campus) (13:00-14:00)

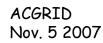
Symposium: the GRID and Conclusions - IoIT (VAST Campus) (16 November 14:00-18:30)

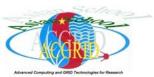
time	[id] title	presenter
14:00	[5] The EGEE GRID in Asia (00h30')	Prof. LIN, Simon
14:30	[9] Grid as a tool for e-science (00h30')	BOUTIGNY, Dominique
15:00	[65] Networking in Vietnam (00h30')	
15:30	[8] VNGRID (00h30')	Prof. LANG, Tran Van Prof. THUY, Nguyen Thanh
16:00	break (00h30')	
16:30	[13] The GRID in Japan (00h30')	Dr. SASAKI, Takashi
17:00	[11] The GRID in China (00h30')	Prof. CHEN, Gang
17:30	[64] Conclusions and perspectives (00h30')	Dr. AURENCHE, Patrick

Grids in ASIA and France

ACGRID Nov. 5 2007

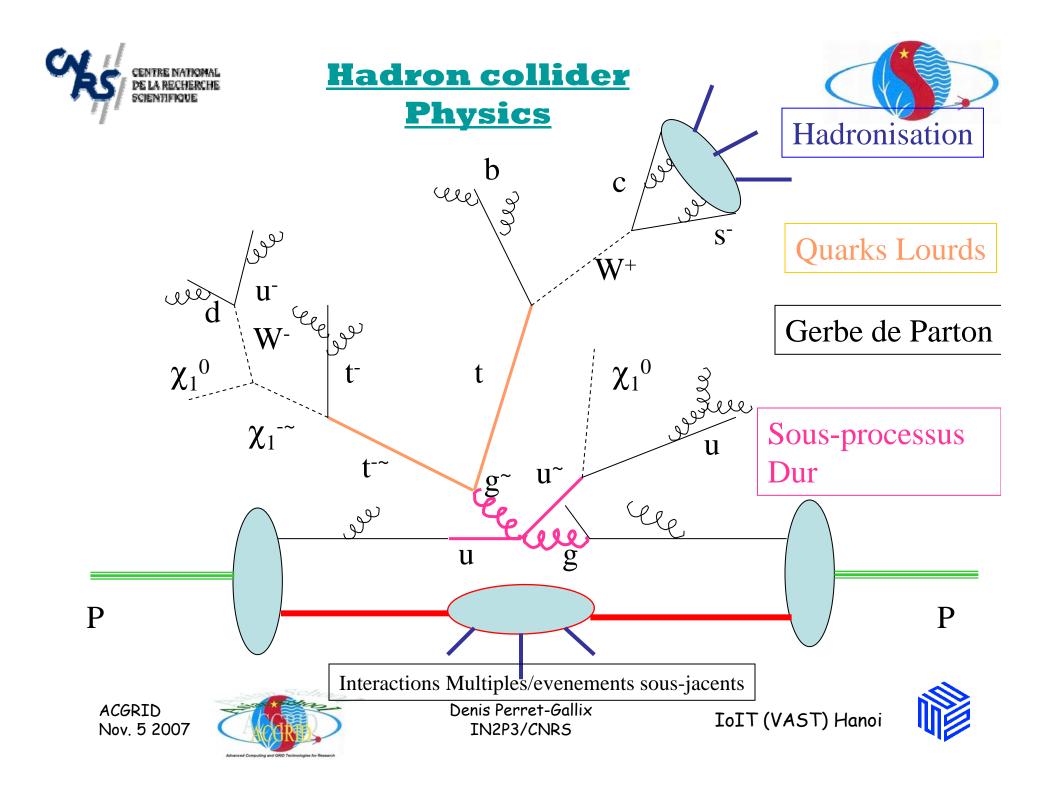
IN2P3/CNRS





- Particle Physics
- <u>Automatic Feynman diagram Computations</u>
- BOINC: Feynman@Home Project
- Advanced Computing and Analysis Technologies (ACAT workshop series)
- FJPPL: France-Japan Particle Physics Lab.
- Cooperation Asia-Pacific in Nuclear and Particle Physics

Denis Perret-Gallix IN2P3/CNRS



ACGRID Nov. 5 2007

Denis Perret-Gallix IN2P3/CNR5

Do not forget about the Nov. 15 Banquet

ACGRID Nov. 5 2007

Denis Perret-Gallix IN2P3/CNR5

