From few to kilo and more detectors - a DA perspective

R. Stompor (APC)

More detectors is generically good ... this is what drives the sensitivity of the current and future CMB experiments

But it comes with some downsides ...

- data volumes;
- need for characterization of large number of
- detectors;

potential extra systematic effects: cross-talks,

correlations, etc.

CMB from the ground

So far, so good ... (1)

- Multiple demonstrations of successfully analyzed Stage-II data sets
 - featuring O(10³) detectors and data volumes typically O(10) x Planck data set.
- But well this was 'easy'

So far, so good ... (2)

- Some compromises have been typically made. Some necessary, some merely convenient ...
- E.g.,
 - simple filter-and-bin map-making;
 - simplified noise weights passed between stages of the pipeline, e.g.,
 'divide-and-conquer' map-making;
 - correction 'fudge factors' derived via MCs and applied on later stages;
 - use of cross- as opposed to auto-spectra;
 - simplified MCs, or semi-analytic arguments, to get the final uncertainty.
- More time-consuming techniques used more for cross-check than a production of actual results or applied to simplfied, e.g., underpixelized, data, only subset of null/consistency tests, etc ...

Number of the extra degrees of freedom by far dominates the number of the useful one.

So far, so good ... (3)

Systematics effects safeguards/treatment:

- multi-criteria data selection in multiple domains;
- verified by null test suite plus high-level statistics;
- filtering and, occasionally, deprojection, templating...;
- use of Planck: templates, calibrators, etc
- new techniques for cross-talks, atmosphere correction, etc
- ab initio simulations of anticipated effects;
- use of composite and detector-specific characteristics;
- a global angle calibration derived/verified by EB = 0.

Stage-II DA upshot

Overall:

- Very pragmatic, but probably got most of the science out of the existing data sets.
- Hinged on assumptions.
- Relied on huge redundancy, quality of the instruments, sheer power of the data ?!
- Successful ...

Beyond Stage-II (1)

- Can (should?!) the Stage-II DA experience be replicated ?
- Some but ...
 - 1. Volume:
 - Stage-III data = O(10) x Stage II;
 - Stage-IV data = O(50) x Stage III;
 - 2. Complexity:
 - multi-frequency/foreground cleaning.
 - 3. Precision.

Beyond Stage-II (2)

• Efficient I/O layer:

software: staging, caching, overlapping, hardware: non-volatile memories.

- New algorithms: from TOD up to maps.
 - Supercomputers ... new programming models ...
- Advanced instrument/data models.
- Calibration strategies in the lab and the field;
- Hardware solutions;
- Efficient, flexible, comprehensive simulations ("on-the-fly") of statistical and systematic effects at the scale;
- Adaptable foregrounds simulations;

Instead of conclusions

- Data analysis as an open-ended process ...
- Blindness ...
- Should be cautiously optimistic about the future ... but more work is needed

– And, yes, it is great to have Stage-III before Stage-IV !

 Simple, pragmatic approaches – a great starting point; second pass – certainly helpful and informative.