

Giampaolo Pisano¹, Maria Salatino² and Fabio Noviello¹

1) Cardiff University, 2) APC Université Paris 7 Denis Diderot

Towards the European Coordination of the CMB programme, Villa Finaly, Firenze, 7/9/2017

Why polarisation modulation? 1/2

Polarisation modulation

- We mean rotation of the linear polarisation sensitivity of an instrument
- Modulation of the signal by the detectors

Unpolarised light

- In principle unaffected
- Intensity and polarised signals separated in the frequency domain

Extraction from low frequency 1/f noise

- Detected signals are shifted into a user-defined band far from:
 - 1/f unpolarised atmospheric noise leaking into polarisation
 - Unpolarised ground pickup
 - 1/f detector/electronic noise, gain drifts
 - Long term instabilities, changes of the instrument response

Why polarisation modulation? 2/2

Mitigation of systematics effects

- A single polarisation-sensitive detector measures the modulated Q and U
- Beam mismatches, asymmetries
- Differential gain of the orthogonal polarisation detectors of the same pixel
- In general:
 - \rightarrow Temperature-to-polarisation and polarisation-to-polarisation leakage

Scanning strategy

 Best polarisation sensitivity is achieved by observing each pixel in the sky with the same detector with many different, and possibly evenly spread, polarisation angles

Without a polarisation modulator

Instruments without polarisation modulators

 Polarisation modulation achieved via rotation of the instrument with respect to the sky or sky rotation (scanning)

> Detector pairs differencing techniques required

- Detectors sensitive to orthogonal polarisations need to be well characterised and have stable responsivity ratios
- Spurious signals arising from inaccurate detector calibrations, time dependent responsivities, independent noises, different antenna patterns

> Projects:

- Planck
- ACTPol
- BICEP, Keck array, BICEP Array
- QUaD, QUIET, QUIJOTE
- SPTPol, SPT-3G

Polarisation modulator milestones

> MAXIPOL

First CMB experiment using a rotating HWP

> EBeX

• So far the only one exploiting the magnetic levitation technology

> ABS

- First CMB ground experiment using a 300K continuos rotating HWP, first demonstrating the capability of suppressing 1/f noise due to unpolarised atmosphere
- → It is possible to recover CMB polarization signal over large angular scales from CMB ground experiments

LiteBIRD

- Currently the only satellite proposal (phase A) with HWPs
- It is implementing the experience gained with EBeX

MAXIPOL (Johnson B.R. et al., 0308259, 2003)

ABS (Kusaka A. et al. 2014,1310.3711)

How to modulate linear polarisation

Quasi-optical modulation of linearly polarised light

- Rotating Half-Wave Plate (HWP) + fixed polariser + detectors or
- Rotating HWP + polarisation-sensitive detectors
- Mechanical rotation at **f**
- Polarised signal rotates at 2f
- Polarisation sensitive detector signals at **4f**

Linear

Un-polarised

Projects with polarisation modulators

- HERTZ, SCUPOL, SHARP, POLARBEAR, SMA
- POLKA, ABS, NIKA, NIKA2, CLASS, AdvACTPol
- MAXIPOL, EBEX, PILOT, BLASTPOI, SPIDER, PIPER, ...

Quasi-optical polarisation modulators

Transmissive modulators

- Single plate birefringent HWP
- Multi-plate Pancharatnam HWP
- Embedded Mesh HWP
- Diced Silicon HWP

Reflective modulators

- Reflective HWP
- Embedded Reflective HWP
- Variable-delay Polarisation Modulator
- Translation Polarisation Rotator

Transmissive modulators 1/2

Single plate

- Sapphire slabs
- Available up to 500mm diameter

Multi-plate Pancharatnam

- Single plate birefringent HWP
- Multi-plate Pancharatnam HWP
- Large bandwidths proportional to the number of plates

Projects: SCUPOL, POLARBEAR, ABS, MAXIPOL, EBEX, PILOT, BLASTPOI, SPIDER

Hill et al. 2016, 1607.07399

POLARBEAR2

Transmissive modulators 2/2

Mesh HWP

- Based on embedded mesh-filter technology
- Anisotropic mesh-filters
- Capacitive and inductive stacks
- Bandwidths ~100% (3:1)
- HWP axes defined photolithograpically

Projects: NIKA, NIKA2, BlastTNG, ASTE, CLASS (QWPs)

QUBIC, LSPE, LiteBIRD HFT (?)

> Variable-delay Polarisation Modulator (VPM)

- Periodic displacement of a free-standing wire grid parallel to a mirror
- Modulation of Q <u>or</u> U

Reflective modulators 1/2

• VPM 45 deg rotation to switch from Q to U sensitivity

Projects: CLASS, PIPER

D.T. Chuss et al. 2006

Reflective modulators 2/2

Embedded Reflective HWP

- Based on embedded mesh-filter technology
- Working principle based on artificial magnetic surface

Pol 1

PEC

- Very large bandwidths achievable
 - \rightarrow ~156%, 8:1 ratio or 3 octaves
- Large diameters

Projects: GISMO2 (?), LiteBIRD (?)

Polarisation modulation strategies

Continuous rotation (fast)

- Ideal case (many samplings of the polarization vector)
- Modulation sky polarisation above the 1/f knee of atmospheric emission
- Rapid modulation in general more robust against systematic errors
- Need development of demodulation techniques
- Useful for mitigating calibration errors

Projects: ABS, MAXIPOL, EBeX, POLKA, NIKA, NIKA2, POLARBEAR1,2, AdvACTPOL

ABS: - Significant reduction of atmospheric noise down to 1-2 mHz

- NIKA: Significant reduction of atmospheric noise in the polarised signal
 - Developed algorithm to correct/reduce I \rightarrow P leakage
 - Potential to measure polarisation at large angular scales

LiteBIRD: proposal of a continuous polarisation modulation

Stepped rotation (slow)

- Periodic changes of the polarisation modulator angle followed by instrument scan and integration
- Fewer number of samplings polarisation vector
- Less dissipated power

Projects: HERTZ, SCUPOL, SHARP, PILOT, BLASTPOI, SPIDER, POLARBEAR, SMA, QUBIC

Polarisation modulator location

- > Pol modulator as first element of the optical chain
 - Advantages:
 - Complete decoupling between sky and instrumental polarisation, no need to deal with modulation of beam systematics
 - Ambient temperature rotation mechanism, no problems with heat dissipation
 - Disadvantages:
 - Operating at ambient temperature \rightarrow PM higher (differential) emissivity
 - Projects: ABS (cold mirrors, I > P leakage below -30dB), PIPER, CLASS, SPIDER, LiteBird: ...

Polarisation modulator location

> Pol modulator within optical system / at pupil image (Lyot stop)

- Advantages:
 - If the PM is located at the pupil image (Lyot stop) the detectors will see the same portion of the HWP → Some of the HWP systematics can be removed as a common mode between detectors
 - <u>If</u> PM operating at cryogenic temperatures \rightarrow PM lower (differential) emissivity
- Disadvantages:
 - Modulation of instrumental polarisation from optics on the sky side
 - <u>If</u> PM at cryogenic temperatures \rightarrow need low dissipation cryo-mechanism
- **Projects**: MAXIPOL, EBEX, NIKA, NIKA2

Rotation mechanisms 1/2

Ambient temperature continuous rotation

- External motor with rotary vacuum feedthrough
 - Cryogenic rotating HWP \rightarrow MAXIPOL
- Ball bearings
 - Thin-section ball bearings \rightarrow POLARBEAR
- Air bearings
 - Ambient temperature rotating HWP \rightarrow ABS
- **Projects**: POLARBEAR 1-2a, AdvACTPol, NIKA, NIKA2, Brain(QWP)

Kusaka A. et al. 2014, 1310.3711

Rotation mechanisms 2/2

- Cryogenic stepped rotation
 - Mechanical system:
 - Worm gear + worm screw + magnetic coupling
 - **Projects**: PILOT, QUBIC, SPIDER
- Cryogenic continuous rotation
 - Magnetic levitation:
 - Systematics due to Eddy currents
 - **Projects**: EBeX, POLARBEAR2b,2c, LSPE/SWIPE, LiteBIRD

PILOT

Klein J. et al. SPIE, 2011, 8150, 815004

Salatino M. et al., 2011, 1006.5392

For a review:

CMB-S4 Technological Book (sec. 3.6.5), 1706.02464 (2017)

Bryan S. et al., 2016, 87, RSI 014501

Half Wave Plate systematics 1/4

Performance parameters

- Transmission & Reflection
- Absorption/emissivity
- Bandwidth
- Modulation efficiency

Jones matrix for a non-ideal HWP

$$\mathbf{J}_{\mathrm{hwp}} = \begin{pmatrix} 1+h_1 & \zeta_1 e^{i\chi_1} \\ \zeta_2 e^{i\chi_2} & -(1+h_2)e^{i\beta} \end{pmatrix}$$

Spurious signals

 On top of the sky polarisation modulation, HWP imperfections can lead to background modulation and spurious signals at higher harmonics (nf)

Half Wave Plate systematics 2/4

- Differential transmission
 - Origins:
 - Birefringent crystal with non-birefringent ARC
 - Different transmissions along mesh C and L axes
 - HWP Instrumental Polarisation:
 - Linear pol from unpolarised sky emission
 - HWP synchronous, detected at 2f
 - Note: <u>If</u> IP produced on the sky side of the HWP, e.g. by mirrors/windows, it will be detected at **4f** (I > Q/U leakage)

Differential emissivity

- Origins:
 - Different absorption coefficient along axes
 - ightarrow Polarised emission along axes
 - HWP synchronous, detected at **2f** (0.3% in the **ABS** experiment)
- Note: <u>If</u> differential emissivity produced on the sky side of the HWP it will be detected at **4f** (I > Q/U leakage)

Pisano et al, Appl. Opt. (2006)

Half Wave Plate systematics 3/4

Temperature variations

• Drifts of the HWP temperature with time \rightarrow Different emissivities

HWP cross-polarisation

• Leakage of polarisation from one axis to the other

Beam impact

• Deterioration of the beam passing through the HWP (ellipticity)

Multiple reflections

- Within detectors and HWP → detected at 2f
- Reflections at non-normal incidence can be detected at 4f (I > Q/U)

> Non-uniform optical properties

• HWP or ARC surface inhomogeneities → can be detected at **4f**

Driving mechanism

- HWP-synchronous signals can arise from the HWP drive mechanism (observed, among others, in MAXIPOL and EBeX)
- If HWP and rotation mechanism misaligned (wobbling) \rightarrow detected at 4f

Half Wave Plate systematics 4/4

> HWP axes orientation frequency dependence

- Effect arising in birefringent rotated multi-plate designs
- Phase offset of the intensity-vs-angle modulation at different frequencies
- Dependent on the stack construction parameters
- Overall in-band response dependent on the instrument spectral response and the incident radiation spectrum

Polarisation angle reconstruction errors

• HWPs in stepped mode might have slight oscillations around a median point before settling at each step; these errors adds up to the detector angle uncertainties:

 \rightarrow This is an issue both for C_l reconstruction as well as for polarisation calibration on the sky **Note:**

- The HWP induced I > Q/U leakage affects the recovery of our polarisation signal and are especially problematic at large angular scales
- However:
 - HWPs mitigates I > Q/U leakage due to beam systematics (differencing) in HWP-less experiments
 - <u>If</u> the HWP effects are quantified (via measurements and/or simulation), they can be assessed in the demodulation and successive mapmaking/parameter extraction phases

Modulator characterisation: Reflective HWP

Polarised signal modulation

- Off-axis operation breaks the symmetry
- S & P polarised input signals at fixed angle
- HWP rotation

Modulator characterisation: **ER-HWP** beam effects

S-Pol T

- Conversion of laboratory measurements into Jones' parameters
- HWP performance requirements from instrument requirements

Systematic	Parameters	Requirement	Goal
HWP efficiency	η_{HWP}		
Phase shift	β		
	σ_{eta}	••••	
Transmission	$ \Delta h = h_1 - h_2 $		
	$ h_1 , h_2 $		
	$\sigma_{h_1}, \sigma_{h_2}$		
	T_C		
	T_L	••••	
	$ T_C - T_L $		
	σ_{T_C,T_L}		
Cross polarization	ζ_1, ζ_2		
	σ_{ζ_1,ζ_2}		
	σ_{ζ_1,ζ_2}		
	x-Pol		
	$\sigma_{ ext{x-Pol}}$		
HWP induced ellipticity	ε_{HWP}		
$\mathrm{Flatness}^{a}$	Δx		
Modulated dis-homegeneity	$h^{ m mod}$	••••	
Thermal stability	$\operatorname{NET}_{\operatorname{HWP}}$		

> Constraints on HWP's performance parameters and their knowledge accuracy

Conclusions

- Many CMB projects are now successfully employing polarisation modulators. There is also a proposal to employ them on the satellite mission LiteBIRD.
- Proven reduction of unpolarised atmospheric 1/f noise leaking into polarisation
- > Proven mitigation of instrumental systematics
- Many modulator technologies with increasing larger diameters are now available
- Difficult to define the best configuration due to the multiple options and the related and combined pros and cons