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Why polarisation modulation? 1/2

» Polarisation modulation
* We mean rotation of the linear polarisation sensitivity of an instrument

* Modulation of the signal by the detectors

» Unpolarised light
* In principle unaffected

* Intensity and polarised signals separated in the frequency domain

» Extraction from low frequency 1/f noise
* Detected signals are shifted into a user-defined band far from:
- 1/f unpolarised atmospheric noise leaking into polarisation
- Unpolarised ground pickup
- 1/f detector/electronic noise, gain drifts

- Long term instabilities, changes of the instrument response



Why polarisation modulation? 2/2

» Mitigation of systematics effects

A single polarisation-sensitive detector measures the modulated Q and U

* Beam mismatches, asymmetries

Differential gain of the orthogonal polarisation detectors of the same pixel

In general:

- Temperature-to-polarisation and polarisation-to-polarisation leakage

» Scanning strategy

* Best polarisation sensitivity is achieved by observing each pixel in the sky
with the same detector with many different, and possibly evenly spread,
polarisation angles



Without a polarisation modulator

» Instruments without polarisation modulators

* Polarisation modulation achieved via rotation of the instrument with
respect to the sky or sky rotation (scanning)

> Detector pairs differencing techniques required

* Detectors sensitive to orthogonal polarisations need to be well
characterised and have stable responsivity ratios

* Spurious signals arising from inaccurate detector calibrations, time
dependent responsivities, independent noises, different antenna patterns

» Projects:
* Planck
 ACTPol
e BICEP, Keck array, BICEP Array
* QUaD, QUIET, QUIJOTE
* SPTPol, SPT-3G



POlarisation mOdU|at0r mileStoneS MAXIPOL (Johnson B.R. et al., 0308259, 2003)
Array of Horns

> MAXIPOL
* First CMB experiment using a rotating HWP

> EBeX

* So far the only one exploiting the magnetic levitation
technology

> ABS

e First CMB ground experiment using a 300K continuos
rotating HWP, first demonstrating the capability of
suppressing 1/f noise due to unpolarised atmosphere

- It is possible to recover CMB polarization signal over
large angular scales from CMB ground experiments
» LiteBIRD

* Currently the only satellite proposal (phase A) with
HWPs

* Itisimplementing the experience gained with EBeX
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How to modulate linear polarisation

» Quasi-optical modulation of linearly polarised light

Rotating Half-Wave Plate (HWP) + fixed polariser + detectors or
Rotating HWP + polarisation-sensitive detectors

Mechanical rotation at f

Polarised signal rotates at 2f

Polarisation sensitive detector signals at 4f Linear Un-polarised
Polarisation l
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» Projects with polarisation modulators

HERTZ, SCUPOL, SHARP, POLARBEAR, SMA
POLKA, ABS, NIKA, NIKA2, CLASS, AdvACTPol
MAXIPOL, EBEX, PILOT, BLASTPol, SPIDER, PIPER, ...



Quasi-optical polarisation modulators

» Transmissive modulators
* Single plate birefringent HWP
e Multi-plate Pancharatnam HWP
* Embedded Mesh HWP
* Diced Silicon HWP

> Reflective modulators
* Reflective HWP
* Embedded Reflective HWP
 Variable-delay Polarisation Modulator

* Translation Polarisation Rotator
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Transmissive modulators 1/2 B-HWP

> Single plate
* Sapphire slabs - I
* Available up to 500mm diameter e °
8
» Multi-plate Pancharatnam
* Single plate birefringent HWP 7‘

* Multi-plate Pancharatham HWP
* Large bandwidths proportional to the
number of plates

Projects: SCUPOL, POLARBEAR, ABS,
MAXIPOL, EBEX, PILOT, BLASTPol, SPIDER

CIOVER demonstrator 3-plates Sapphire




Transmission

Transmissive modulators 2/2

> Mesh HWP

Based on embedded mesh-filter technology

Anisotropic mesh-filters

Capacitive and inductive stacks
Bandwidths ~100% (3:1)

* HWP axes defined photolithograpically
Projects: NIKA, NIKA2, BlastTNG, ASTE, CLASS (QWPs)
QUBIC, LSPE, LiteBIRD HFT (?)

Transmissions along the inductive and capacitive axes
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Reflective modulators 1/2 R-HWP

» Variable-delay Polarisation Modulator (VPM)

* Periodic displacement of a free-standing wire grid
parallel to a mirror

* Modulation of Qor U
* VPM 45 deg rotation to switch from Q to U sensitivity

Projects: CLASS, PIPER D.T. Chuss et al. 2006
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Reflective modulators 2/2 .
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» Embedded Reflective HWP I

* Based on embedded mesh-filter technology AMC o

* Working principle based on artificial magnetic surface
* Very large bandwidths achievable
- ~156%, 8:1 ratio or 3 octaves

* Large diameters

Projects: GISMO?2 (?), LiteBIRD (?)
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Polarisation modulation strategies

» Continuous rotation (fast)
* Ideal case (many samplings of the polarization vector)
* Modulation sky polarisation above the 1/f knee of atmospheric emission
* Rapid modulation in general more robust against systematic errors
* Need development of demodulation techniques
* Useful for mitigating calibration errors

Projects: ABS, MAXIPOL, EBeX, POLKA, NIKA, NIKA2, POLARBEAR1,2, AdvACTPOL

ABS: - Significant reduction of atmospheric noise down to 1-2 mHz
NIKA: - Significant reduction of atmospheric noise in the polarised signal
- Developed algorithm to correct/reduce | = P leakage
- Potential to measure polarisation at large angular scales
LiteBIRD: proposal of a continuous polarisation modulation

» Stepped rotation (slow)
* Periodic changes of the polarisation modulator angle followed by
instrument scan and integration
* Fewer number of samplings polarisation vector
* Less dissipated power
Projects: HERTZ, SCUPOL, SHARP, PILOT, BLASTPol, SPIDER, POLARBEAR, SMA, QUBIC



Polarisation modulator location

» Pol modulator as first element of the optical chain
* Advantages:
- Complete decoupling between sky and instrumental polarisation,
no need to deal with modulation of beam systematics
- Ambient temperature rotation mechanism, no problems with heat dissipation

* Disadvantages:
- Operating at ambient temperature = PM higher (differential) emissivity

* Projects: ABS (cold mirrors, | > P leakage below -30dB),
PIPER, CLASS, SPIDER, LiteBird: ...
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Polarisation modulator location

> Pol modulator within optical system / at pupil image (Lyot stop)

* Advantages:
- If the PM is located at the pupil image (Lyot stop) the detectors will see the
same portion of the HWP = Some of the HWP systematics
can be removed as a common mode between detectors

- If PM operating at cryogenic temperatures = PM lower (differential) emissivity

e Disadvantages:
- Modulation of instrumental polarisation from optics on the sky side
- If PM at cryogenic temperatures = need low dissipation cryo-mechanism

* Projects: MAXIPOL, EBEX, NIKA, NIKA2
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Rotation mechanisms 1/2

» Ambient temperature continuous rotation
* External motor with rotary vacuum feedthrough
- Cryogenic rotating HWP - MAXIPOL

* Ball bearings
- Thin-section ball bearings 2 POLARBEAR
* Air bearings
- Ambient temperature rotating HWP = ABS

* Projects: POLARBEAR 1-2a, AdvACTPol, NIKA, NIKA2, Brain(QWP)

Air-Bearing Rotor Top Air Bearing Radial Air Bearing

HWP Encoder Disk ~ Sapphire HWP Bottom Air Bearing

Window Spacer Post Kusaka A. et al. 2014, 1310.3711



Rotation mechanisms 2/2 For a review:
CMB-S4 Technological Book

» Cryogenic stepped rotation (sec. 3.6.5), 1706.02464 (2017)

* Mechanical system:
- Worm gear + worm screw + magnetic coupling
* Projects: PILOT, QUBIC, SPIDER

» Cryogenic continuous rotation

* Magnetic levitation:
- Systematics due to Eddy currents
* Projects: EBeX, POLARBEAR2b,2c, LSPE/SWIPE, LiteBIRD

Three-Point
Bearing

Klein J. et al. SPIE, 2011, 8150, 815004 Salatino M. et al., 2011, 1006.5392 Bryan S. et al., 2016, 87, RSI 014501



Half Wave Plate systematics 1/4

> Jones matrix for a non-ideal HWP

Jhwp — (

» Performance parameters
* Transmission & Reflection
* Absorption/emissivity
* Bandwidth

* Modulation efficiency

» Spurious signals

* On top of the sky polarisation

modulation, HWP imperfections can

lead to background modulation and

-

spurious signals at higher harmonics (nf)
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Half Wave Plate systematics 2/4 Ty _
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*  HWP Instrumental Polarisation: L
- Linear pol from unpolarised sky emission B N8 U B IS IS e L)
- HWP synchronous, detected at 2f Pisano et al, Appl. Opt. (2006)

* Note: If IP produced on the sky side of the HWP, e.g. by
mirrors/windows, it will be detected at 4f (I > Q/U leakage)

» Differential emissivity
* Origins:
- Different absorption coefficient along axes
- Polarised emission along axes
- HWP synchronous, detected at 2f (0.3% in the ABS experiment)

* Note: If differential emissivity produced on the sky side of the HWP it
will be detected at 4f (I > Q/U leakage)



Half Wave Plate systematics 3/4

» Temperature variations

Drifts of the HWP temperature with time - Different emissivities

» HWP cross-polarisation

Leakage of polarisation from one axis to the other

» Beam impact

Deterioration of the beam passing through the HWP (ellipticity)

» Multiple reflections

Within detectors and HWP = detected at 2f
Reflections at non-normal incidence can be detected at 4f (I > Q/U)

» Non-uniform optical properties

HWP or ARC surface inhomogeneities = can be detected at 4f

» Driving mechanism

HWP-synchronous signals can arise from the HWP drive mechanism
(observed, among others, in MAXIPOL and EBeX)
If HWP and rotation mechanism misaligned (wobbling) = detected at 4f



Half Wave Plate systematics 4/4

» HWP axes orientation frequency dependence
e Effect arising in birefringent rotated multi-plate designs
* Phase offset of the intensity-vs-angle modulation at different frequencies

* Dependent on the stack construction parameters
e OQverall in-band response dependent on the instrument spectral response and the
incident radiation spectrum

» Polarisation angle reconstruction errors
* HWOPs in stepped mode might have slight oscillations around a median point before
settling at each step; these errors adds up to the detector angle uncertainties:

—> This is an issue both for C, reconstruction as well as for polarisation calibration on the sky

Note:
* The HWP induced | > Q/U leakage affects the recovery of our polarisation signal and are
especially problematic at large angular scales
* However:
- HWPs mitigates | > Q/U leakage due to beam systematics (differencing) in HWP-less
experiments

- If the HWP effects are quantified (via measurements and/or simulation), they can be
assessed in the demodulation and successive mapmaking/parameter extraction phases
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» Measured parameters

Polarisation modulation efficiency

Instrumental Polarisation (IP)

Cross-pol leakage along axes
e 45 deg cross-pol



Modulator characterisation: Reflective HWP ERHUP

» Polarised signal modulation

» Off-axis operation breaks the symmetry
* S & P polarised input signals at fixed angle
* HWP rotation

______

a=0°,45°,90°

8 : Incidence angle
a: R-HWP Rotation angle

P-pol : parallel to incidence plane
S-pol : perpendicular to incidence plane




Modulator characterisation: ER-HWP beam effects zrt;?q
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Modulator characterisation: Requirements oy = ( 1C+f
2e'X2

* Conversion of laboratory measurements into Jones’ parameters

C1 etx1
—(1 + hg)ei'ﬁ

)

* HWP performance requirements from instrument requirements

Systematic Parameters Reqguirement Goal
HWP efficiency NMHW P
Phase shift 3
s cess
Transmission |Ah| = |h1 — h2|
|hal, |he
Thy s (J'g,._.
T{.‘
T cese
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Modulated dis-homegeneity — h™°¢ cess
Thermal stability NEThwp

» Constraints on HWP’s performance parameters and their knowledge accuracy




Conclusions

» Many CMB projects are now successfully employing polarisation
modulators. There is also a proposal to employ them on the
satellite mission LiteBIRD.

> Proven reduction of unpolarised atmospheric 1/f noise leaking
into polarisation

» Proven mitigation of instrumental systematics

» Many modulator technologies with increasing larger diameters
are now available

» Difficult to define the best configuration due to the multiple
options and the related and combined pros and cons



