CMB at Other Sites

Chao-Lin Kuo

Stanford University

SLAC National Accelerator Laboratory

Outline

- Scientific advantages for including a site in the Northern Hemisphere
- Site comparisons (Dome A, South Pole, Atacama, Ali, Greenland)
- Plans and Status for Ali-CMB (Tibet)

Outline

- Scientific advantages for including a site in the Northern Hemisphere
- Site comparisons (Dome A, South Pole, Atacama, Ali, Greenland)
- Plans and Status for Ali-CMB (Tibet)

CMB-S4 Science Book, 2017

CMB-s4 Science

• E-mode polarization

• Lensing B-modes

• Degree-scale B-modes

CMB-s4 Science

- E-mode polarization
- Light relics (N_{eff})
- Scalar perturbations (n_s and running)
- Dark Matter
- Isocurvature perturbations

• Lensing B-modes

- Dark energy
- Neutrino mass

Degree-scale B-modes

• Tensor modes

Ref: Wu et al., ApJ, 788, 138, 2014

E-mode science

Figure 3: Constraints for $\sigma(N_{\text{eff}})$ as a function of the number of detectors and observing sky fraction for 1' to 4' beam sizes.

Wu et al. 2014

E-mode science

		CN	ΔB		CMB+BAO					
	1'	2'	3'	4'	1'	2'	3'	4'		
10^4 detectors										
$f_{sky} = 0.25$	2.91	2.94	2.98	3.04	2.19	2.23	2.29	2.36		
$f_{sky} = 0.50$	2.11	2.13	2.16	2.21	1.64	1.67	1.71	1.75		
$f_{sky} = 0.75$	1.76	1.77	1.80	1.83	1.39	1.42	1.45	1.48		
$10^5~{\rm detectors}$										
$f_{sky} = 0.25$	2.66	2.73	2.80	2.86	1.93	1.98	2.04	2.12		
$f_{sky} = 0.50$	1.94	1.97	2.01	2.06	1.44	1.47	1.51	1.56		
$f_{sky} = 0.75$	1.60	1.63	1.66	1.70	1.22	1.24	1.28	1.32		
10^{6} detectors										
$f_{sky} = 0.25$	2.38	2.48	2.62	2.73	1.70	1.76	1.83	1.92		
$f_{sky} = 0.50$	1.75	1.81	1.90	1.96	1.28	1.32	1.37	1.43		
$f_{sky} = 0.75$	1.45	1.51	1.57	1.61	1.10	1.12	1.16	1.20		

Table V: n_s 1- σ constraints in units of 10⁻³ from CMB and from CMB+BAO. "CMB" includes lensing.

		CN	ЛВ		(CMB-	+BA0	С
	1'	2'	3'	4'	1'	2'	3′	4'
$10^4 \ detectors$								
$f_{sky} = 0.25$	3.40	3.51	3.69	3.92	3.40	3.51	3.68	3.91
$f_{sky} = 0.50$	2.58	2.66	2.79	2.96	2.58	2.66	2.78	2.95
$f_{sky} = 0.75$	2.20	2.26	2.37	2.51	2.20	2.26	2.37	2.51
$10^5 \ detectors$						_	•	
$f_{sky} = 0.25$	2.79	2.92	3.09	3.31	2.78	2.91	8.08	3.30
$f_{sky} = 0.50$	2.09	2.17	2.29	2.45	2.08	2.17	2.29	2.44
$f_{sky} = 0.75$	1.76	1.83	1.93	2.06	1.76	1.82	1.92	2.05
$10^{6} \ detectors$								
$f_{sky} = 0.25$	2.32	2.46	2.65	2.87	2.27	2.42	2.63	2.86
$f_{sky} = 0.50$	1.75	1.83	1.96	2.12	1.72	1.82	1.96	2.11
$f_{sky} = 0.75$	1.47	1.54	1.65	1.77	1.45	1.53	1.64	1.77

Table VI: $\alpha_s \ 1-\sigma$ constraints in units of 10^{-3} from CMB and from CMB+BAO. "CMB" includes lensing. BAO measurements improve constraints in α by a few percent. The improvement is more significant for small sky fractions and small beam size scenarios.

Lensing B-modes

Sky fraction

Lensing B-modes

1 σ constraints of M_{ν} (meV)

Wu et al. 2014

Primordial B-modes: foregrounds Ali-2 **Accessible from** Atacama **BICEP** Arra BICEP2

- 1. There will be lots of lessons learned with better statistics
- 2. Staged wedding cake strategy may be advantageous (e.g. Kovetz & Kamionkowski PRD 91, 081303R, 2015)

Outline

- Scientific advantages for including a site in the Northern Hemisphere
- Site comparisons (Dome A, South Pole, Atacama, Ali, Greenland)
- Plans and Status for Ali-CMB (Tibet)

+ Home

Earth Sciences Division | Sciences and Exploration

Global Modeling and Assimilation Office

SPACE FLIGHT CENTER

GMAO MISSION	WEATHER ANALYSIS SEASONAL-DECADAL & PREDICTION ANALYSIS & PREDICTION		REANALYSIS	GLOBAL MESOSCALE MODELING	OBSERVING SYSTEM SCIENCE							
MERRA-2 Project	Modern-Era	a Retrospective analy	sis for Research and	Applications, Version	on 2							
Data Access	Drain at Overnik											
Documentation	The Modern-Er	≈w a Ratrosnactiva analysis for R	esearch and Applications V	arsion 2 (MERRA-2) provides	data beginning in 1980. It							
Highlights	was introduced	was introduced to replace the original MERRA dataset because of the advances made in the assimilation system that enable assimilation of modern hyperspectral radiance and microwave observations, along with GPS-Radio Occultation datasets. It also uses NASA ozone observations after 2005. Additional advances in both the GEOS-5 model and the GSI assimilation system are										
Images	uses NASA ozo											
Videos	included in MEF	RRA-2. Spatial resolution rem	ains about the same (about	50 km in the latitudinal direct	ion) as in MERRA.							
FAQ	Along with the e of an Earth Syst	enhancements in the meteoro tem reanalysis. MERRA-2 is th	logical assimilation, MERRA ne first long-term global rean	-2 takes some significant st alysis to assimilate space-b	eps towards GMAO's target based observations of							
Publications	aerosols and re	are sold and represent their interactions with other physical processes in the climate system. MERRA-2 includes a representation of ice sheats over (saw) Greenland and Antarctica										
Mailing List	office sheets of	er (Say) Greenland and Antan	uica.									
User Metrics												
Diagnostic Feedback			RAA-2 ective Analysis for Research and Applications, Version 2	GMAC CONSTRUCTION								
NASA	Goddan	Responsible Steven Pa Web Curat	e NASA Official : wson pr:	> Privacy > Contact	Policy & Important Notices Us							

James Gass

NASA's MERRA-2

T, *p*, humidity, wind, CO2, clouds... Observed by a wide range of instr. One profile every 3 hours (0.65° x 0.5°) spatial resolution 72 vertical (pressure) layers 1980 – present, no gaps

Great for "armchair" evaluation of the potential sites (not a replacement of actual site testing)

arXiv:1707.08400 CK

Representative MERRA-2 data

Integral gives you PWV

Effects of water in the atmosphere

am Scott Paine 2017

Representative MERRA-2 data

Instantaneous – time-averaged Specific Humidity Profile in the **vertical** direction

Turbulence seen should be closely related to *angular* fluctuations of brightness temperature

Can be used to define "*d*PWV"

which provides relative comparisons of **different** sites using the **same** measure.

MERRA-2 Results

Main Results

	olov (m)		PWV (mm)		d	l <i>PWV</i> (mn	ı)	IV	VP (kg.m^	-2)	LV	VP (kg.m^	-2)
	elev. (III)	25%	50%	75%	25%	50%	75%	25%	50%	75%	25%	50%	75%
Dome A	4,093	0.105	0.141	0.191	3.65E-03	6.56E-03	1.21E-02	8.09E-05	2.30E-04	6.11E-04	-	-	-
South Pole	2,83 <mark>5</mark>	0.231	0.321	0.448	1.04E-02	1.77E-02	3.17E-02	1.96E-04	1.14E-03	3.97E-03	-	1.77E-05	4.54E-04
Chajnantor (SO)	5,190	0.618	0.993	1.871	1.07E-01	2.20E-01	4.32E-01	-	2.23E-05	1.69E-03	-	-	4.33E-05
Cerro Chajnantor	5,612	0.48	0.746	1.439	8.28E-02	1.71E-01	3.47E-01	-	2.15E-05	1.69E-03	-	-	3.22E-05
Ali1	5,250	0.871	1.343	2.125	1.59E-01	2.66E-01	4.45E-01	7.62E-06	1.16E-03	1.14E-02	-	8.70E-04	8.91E-03
Ali2	6,100	0.459	0.759	1.207	1.01E-01	1.81E-01	3.21E-01	1.70E-06	9.91E-04	1.08E-02	-	5.36E-04	7.56E-03
Greenland	3,216	0.509	0.817	1.436	4.14E-02	7.89E-02	1.56E-01	6.34E-04	2.54E-03	8.34E-03	5.18E-04	3.57E-03	1.15E-02

1. In terms of PWV quartiles: **Dome A < South Pole < Ali2 ~ CC ~ GL < SO ~ Ali1**

2. We should also pay attention to dPWV (fluctuations) and LWP (liquid clouds)

MERRA-2 Results

icy clouds

liquid clouds

Effects of liquid water clouds

am Scott Paine 2017

Brightness temperature fluctuations

				90GHz		150GHz			220GHz			
			25%	50%	75%	25%	50%	75%	25%	50%	75%	
Dome A	d <i>T r</i>	j (K)	5.6E-03	1.0E-02	1.9E-02	1.9E-02	3.5E-02	6.4E-02	4.2E-02	7.6E-02	0.14	
	d <i>T</i> r	j (K)	1.6E-02	2.7E-02	4.9E-02	5.5E-02	9.3E-02	0.17	0.12	0.20	0.37	
South Polo	Δ <i>T rj</i> (K)	vapor only	2.24E-03	4.27E-03	8.18E-03	7.65E-03	1.46E-02	2.79E-02	1.67E-02	3.19E-02	6.11E-02	
South Pole		v+liq. lnr	3.10E-03	7.08E-03	2.07E-02	9.55E-03	2.04E-02	5.08E-02	1.99E-02	4.21E-02	9.61E-02	
		v+liq. quad	2.77E-03	6.18E-03	1.65E-02	8.73E-03	1.80E-02	4.13E-02	1.84E-02	3.65E-02	8.04E-02	
Simons Obs.	dTrj (K)		0.17	0.34	0.67	0.55	1.14	2.24	1.20	2.46	4.83	
Cerro Chaj.	dTrj (K)		0.13	0.26	0.54	0.43	0.89	1.80	0.93	1.91	<mark>3.</mark> 89	
Ali1	dTr	j (K)	0.25	0.41	0.69	0.82	1.38	2.31	1.78	2.98	4.98	
Ali2	d <i>T</i> r	j (K)	0.16	0.28	0.50	0.52	0.94	1.66	1.13	2.03	3 . 59	
	d <i>T</i> r	j (K)	6.39E-02	0.12	0.24	0.21	0.41	0.81	0.46	0.88	1.75	
Greenland	Δ <i>T rj</i> (K)	vapor only	9.35E-03	2.01E-02	4.28E-02	3.14E-02	6.75E-02	0.14	6.79E-02	0.15	0.31	
		v+liq. lnr	3.40E-02	0.11	0.29	8.00E-02	0.21	0.50	0.14	0.36	0.81	
		v+liq. quad	3.01E-02	9.41E-02	0.25	6.49E-02	0.17	0.40	0.11	0.27	0.64	

"When measured in the units of the South Pole *d*PWV median, the *d*PWV medians for Dome A, Greenland, Cerro Chajnantor, Simons Obs., Ali2, Ali1 are <u>0.37, 4.5, 9.7, 12.4, 10.2, 15.0</u>, respectively. "

Outline

- Scientific advantages for including a site in the Northern Hemisphere
- Site comparisons (Dome A, South Pole, Atacama, Ali, Greenland)
- Plans and Status for Ali-CMB (Tibet)

Ali-CMB Program

- Program: one of the four major astro-cosmo projects supported by Chinese Academy of Sciences (the others being FAST, studies of space gravitational wave probes TianQin & TaiJi)
- **Goal:** search for primordial gravitational waves through *B*-mode polarization
- Site: Ali, Tibet
 - Near Ali airport/town; good transportation + electricity
- Experimental Program:
 - Focusing on tensor perturbations (r)
 - Phase I: at 5,250m (single receiver, 95/150GHz); wide survey
 - Phase II+: ~6,000m (multiple multichroic receivers) + possible delensing telescope(s) : this could be China's generation-4 CMB program

Summit station Greenland

Mr. Care

Latitude: N+32° 19' Daily flight from Lhasa (Tibet capital) Dry side of Himalayas

Ali, Tibet

US Dept of State Geographer © 2018 Geogle Image Landsat / Copernious © 2009 GeoBasis-DE/EKG

Google

IHEP / SLAC Collaboration on Ali-CMB

- Institute of High Energy Physics, Chinese Academy of Sciences
 - Leading the 100-TeV collider concept
 - Has a strong particle-astrophysics program, e.g., HXMT (successfully launched in June)
 - Past collaborating with DOE and NSF:
 - Daya Bay neutrino exp. made ground-breaking measurements on $\vartheta_{_{13}}$
 - Collider-based particle experiments
- SLAC/Stanford CMB group just led the development and deployment of BICEP3 receiver (running at 8 uK-rtS); does cold optics; starting a major program on microwave SQUIDs; building a clean room for fabrication of superconducting detectors
- Discussions between IHEP and SLAC started in 2014. First agreement concerning Phase-I of the program (single receiver), carried out under the guidance of CAS, DOE using the ICRADA framework (International Cooperative Research Development Agreement)
- SLAC becomes a full science partner of Ali-CMB program ; China joins the R&D effort
- Responsibilities: SLAC (receiver/focal plane/readout) ; China (site/observatory/mount)

All three candidate sites at 6000 m+

Basic features of the receiver

- We know how to build 80cm lenses (SPT3G) & ~90 cm windows/ IR filters (SPT3G & BICEP3)
- Easily accommodating **19 six-inch** modules in a single compact telescope

Complementary to CMB-S4

- 1. There will be lots of lessons learned with better statistics
- 2. Staged wedding cake strategy may be advantageous (e.g. Kovetz & Kamionkowski PRD 91, 081303R, 2015)

Thank you!