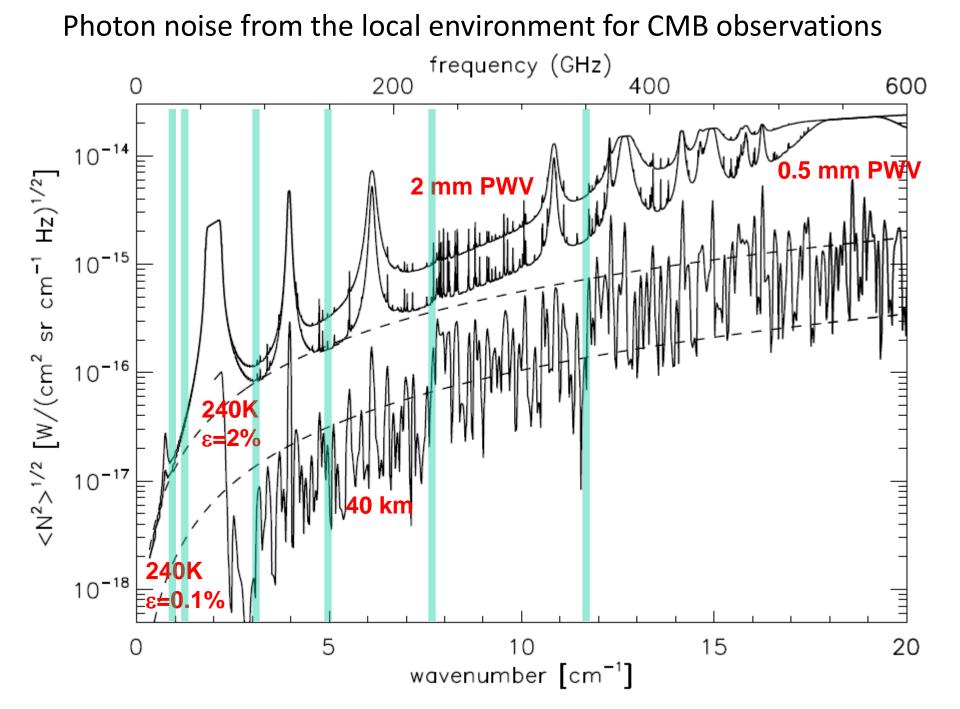


Balloons P. de Bernardis Sapienza – Rome

Towards the European Coordination of the CMB programme Villa Finaly, Firenze, 6th -8th Septemeber, 2017

https://indico.in2p3.fr/event/14661/

Stratospheric Balloons:



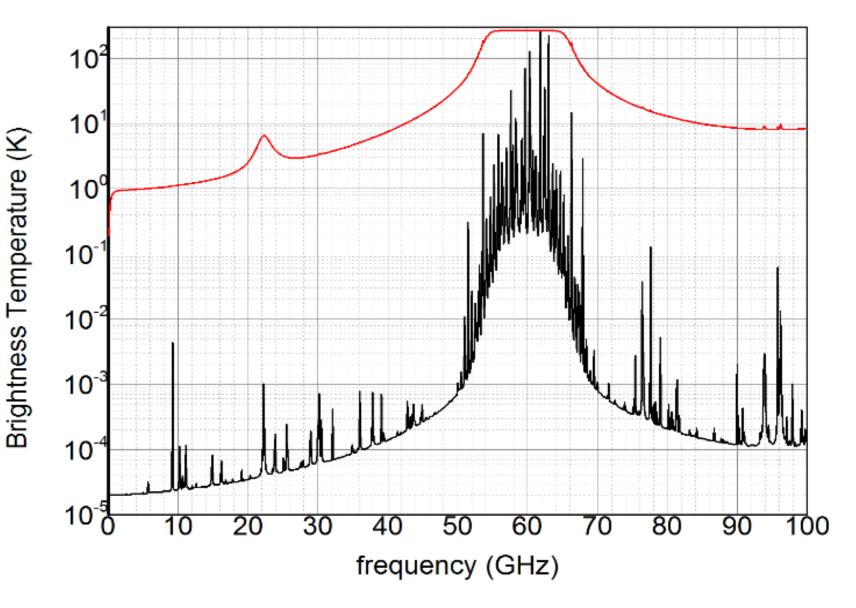
- Near-space carriers able to:
 - Reach 40 km (3 mbar)
 - Stay there for up to 40 days
 - Lift heavy (2 tons) large payloads (larger than what we can reasonably fly on satellites)
 - Cost roughly 1/100 of a satellite mission
 - Allow for recovery and refly of the payload
- Important for the CMB community:
 - To carry out sensitive observations at high frequency, high resolution, and at the largest angular scales
 - To qualify instrumentation in preparation of satellites
 - To educate young experimentalists !

Future balloon borne CMB experiments Worked Sensitivity Example: Ground-based

GROUND BASED MEASUREMENT									
telescope aperture diameter (m)	4.5			i	integration tim	ne (days)	730		
Т СМВ (К)	2.725			1	time efficiency	,	0.5		
T atmo (K)	240								
Channel center f (GHz)		33	44	90	145	220	270	340	480
wavenumber (cm-1)		1.10	1.47	3.00	4.84	7.34	9.01	11.34	16.01
Channel center wavelength (mm)		9.09	6.82	3.33	2.07	1.36	1.11	0.88	0.63
fractional bandwidth		0.20	0.20	0.20	0.20	0.20	0.10	0.10	0.10
bandwidth (GHz)		6.60	8.80	18.00	29.00	44.00	27.00	34.00	48.00
throughput (m2 sr)		82.6E-6	46.5E-6	11.1E-6	4.3E-6	1.9E-6	1.2E-6	778.5E-9	390.6E-9
Airy disk diameter (first zero, arcmin)		8.5	6.4	3.1	1.9	1.3	1.0	0.8	0.6
Edge taper (dB)		-23	-23	-23	-23	-23	-23	-23	-23
Spill-over (assuming Gaussian beam)		0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Pure Gaussian beam FWHM (arcmin)		8.5	6.4	3.1	1.9	1.3	1.0	0.8	0.6
Beam FWHM (arcmin)		9.2	6.9	3.4	2.1	1.4	1.1	0.9	0.6
detector efficiency		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
x_CMB		0.58	0.77	1.59	2.55	3.87	4.76	5.99	8.45
background (CMB only, W)		184.7E-15	221.2E-15	279.1E-15	237.1E-15	137.2E-15	42.3E-15	19.4E-15	3.3E-15
shot noise (W/sqrt(Hz))		2.8E-18	3.6E-18	5.8E-18	6.7E-18	6.3E-18	3.9E-18	3.0E-18	1.4E-18
total NEP (W/sqrt(Hz)		5.7E-18	7.2E-18	11.5E-18	13.5E-18	12.6E-18	7.8E-18	5.9E-18	2.9E-18
NET (uK_CMB/sqrt(Hz))		63	61	56	56	63	104	138	283
x_atm		0.007	0.009	0.018	0.029	0.044	0.054	0.068	0.096
T_b (K) 4500 m OSL		2.3	8.3	5.3	5.8	9.7	14.5	28	117
Transmission 4500 m OSL		0.99	0.96	0.98	0.98	0.96	0.95	0.81	0.47
background (atmo only, W)		210.8E-15	1.0E-12	1.3E-12	2.3E-12	5.8E-12	5.3E-12	12.8E-12	74.5E-12
shot noise (W/sqrt(Hz))		3.0E-18	7.7E-18	12.5E-18	21.0E-18	41.1E-18	43.5E-18	75.8E-18	217.3E-18
NET (uK_CMB/sqrt(Hz))		34	69	62	89	215	615	2187	45394
NET_GND (uK_CMB/sqrt(Hz)) no turbulence		72	92	84	105	224	624	2191	45394
Number of detectors		10	30	150	400	200	200	200	200
Survey sensitivity (uK arcmin)		9.8	5.4	1.1	0.5	1.0	2.3	6.4	94.6

Future balloon borne CMB experiments Worked Sensitivity Example: Balloon-borne

BALLON-BORNE MEASUREMENT								
telescope aperture diameter (m)	l.5		integration ti	me (days)	120			
Т СМВ (К) 2.7	25	time efficiency		0.9				
T atmo (K) 2	40							
Channel center f (GHz)	33	44	90	145	220	270	340	480
wavenumber (cm-1)	1.10	1.47	3.00	4.84	7.34	9.01	11.34	16.01
Channel center wavelength (mm)	9.09	6.82	3.33	2.07	1.36	1.11	0.88	0.63
fractional bandwidth	0.20	0.20	0.20	0.20	0.20	0.10	0.10	0.10
bandwidth (GHz)	6.60	8.80	18.00	29.00	44.00	27.00	34.00	48.00
throughput (m2 sr)	82.6E-6	46.5E-6	11.1E-6	4.3E-6	1.9E-6	1.2E-6	778.5E-9	390.6E-9
Airy disk diameter (first zero, arcmin)	8.5	6.4	3.1	1.9	1.3	1.0	0.8	0.6
Edge taper (dB)	-23	-23	-23	-23	-23	-23	-23	-23
Spill-over (assuming Gaussian beam)	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Pure Gaussian beam FWHM (arcmin)	8.5	6.4	3.1	1.9	1.3	1.0	0.8	0.6
Beam FWHM (arcmin)	9.2	6.9	3.4	2.1	1.4	1.1	0.9	0.6
detector efficiency	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
x_CMB	0.58	0.77	1.59	2.55	3.87	4.76	5.99	8.45
background (CMB only, W)	184.7E-15	221.2E-15	279.1E-15	237.1E-15	137.2E-15	42.3E-15	19.4E-15	3.3E-15
shot noise (W/sqrt(Hz))	2.8E-18	3.6E-18	5.8E-18	6.7E-18	6.3E-18	3.9E-18	3.0E-18	1.4E-18
total NEP (W/sqrt(Hz)	5.7E-18	7.2E-18		13.5E-18	12.6E-18	7.8E-18	5.9E-18	2.9E-18
NET (uK_CMB/sqrt(Hz))	63	61	56	56	63	104	138	283
x_atm	0.007	0.009	0.018	0.029	0.044	0.054	0.068	0.096
T_b (K) 40 km OSL	0.00011	0.00018	0.0002	0.00074	0.00408	0.02408	0.0461	0.4937
background (atmo only, W)	10.1E-18	22.0E-18	49.7E-18	294.6E-18	2.4E-15	8.8E-15	21.1E-15	314.5E-15
shot noise (W/sqrt(Hz))	2.0954E-20	3.572E-20	7.6838E-20	2.375E-19	8.428E-19	1.772E-18	3.077E-18	1.4116E-17
NET (uK_CMB/sqrt(Hz))	0.23	0.31	0.38	0.99	4.23	23.80	71.88	1385.90
NET_balloon (uK_CMB/sqrt(Hz))	63	61	56	56	64	107	156	1415
Number of detectors	10	30		400	200	200	200	200
Survey sensitivity (uK arcmin)	15.8	6.6	1.3	0.5	0.5	0.7	0.8	5.4



Future balloon borne CMB experiments Worked Sensitivity Example

- In absolute terms, a large array of photon-noise limited detectors on a ultra-long-duration balloon is able to reach cosmic variance limits at all interesting angular scales.
- The comparison to the theoretical sensitivity of groundbased experiments is interesting because defines the frequency range where the balloon advantage is larger.
- In the absence of atmospheric turbulence:
 - one day of integration on a balloon equals:
 - 12 days of operation on the ground at 220 GHz
 - 34 days of operation on the ground at 270 GHz
 - 198 days of operation on the ground at 340 GHz
 - 1390 days of operation on the ground at 480 GHz
 - At these high frequencies, the advantage of a balloon mission is going to improve if atmospheric turbulence is taken into account.

Future balloon borne CMB experiments Atmospheric Effects: absolute brightness

Long Duration Ballooning

Flight Options

- Antarctic Long Duration Balloon (LDB) : 10 30 days / 3 tons
- Wanaka Super Pressure Balloon (SPB) : 30 100 days / 1 ton
- Polar Night Flights : ~ 10 days
- Conventional Flight (Ft. Sumner, Palestine, Timmons) : 1 day

Flight Parameters

- 33-37 km altitude
- 1 km altitude stability (200 m for SPB)
- Annual flight windows
 - January (LDB, Svalbard), April (SPB, Wanaka), June (Palestine), September (Ft. Sumner)

Great progress with super-pressure balloons: COSI payload flown by CSBF in may 2016 for 47 days at altitudes between 33 km and 21 km, with a with a 0.5Mm³ SPB

https://blogs.nasa.gov/superpressureballoon/

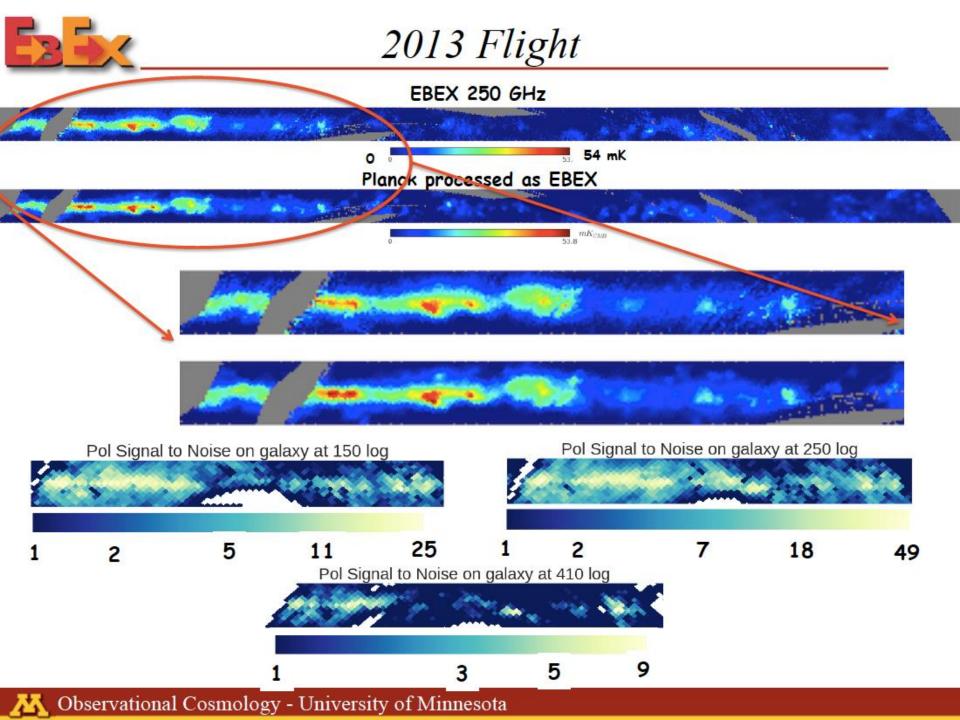
Polar Night Flights

Stratospheric Balloons:

Disadvantages:

- Stringent limits on mass, power
- Complexity of automation
- Insane integration schedule
- Narrow, and scarce, flight windows
- Risky recovery

CMB-related science from balloons

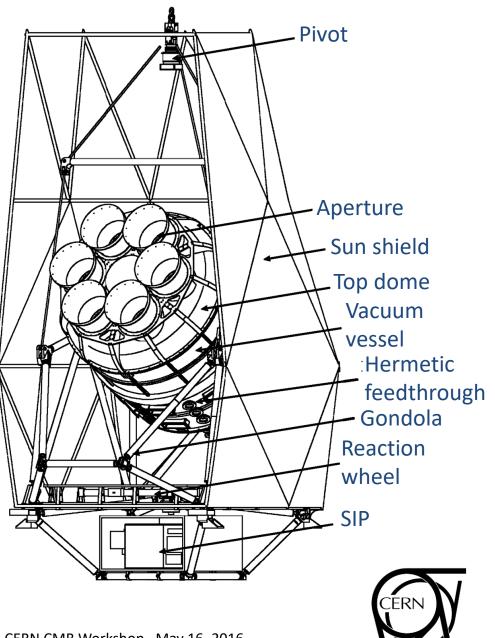

(with large advantage wrt ground-based experiments)

- Dust-cleaned polarization & Dust-cleaned inflationary and lensing B-modes
- CMB Polarization at very large angular scales
- Spectral measurements of the SZ
- Spectral measurements of CIB anisotropy
- Precision measurements of CMB spectrum (at selected frequencies)

Current / Pending Balloons for CMB-related science

Missions Recently Flown	survey area [sky fraction]	frequencies [GHz]	resolution [arcmin]
EBEX (2012/13)	0.2	150/250/410	8/5/5
Spider (2014/15)	0.1	94/150	42/28
PILOT (2015)	< 0.01	1200/545	3
Missions Planned	survey area [sky fraction]	frequencies [GHz]	resolution [arcmin]
Piper (2016)	0.8	200	36
Spider (LDB 2017)	0.1	94-285 (3)	42-15
OLIMPO (N.LDB 2017)	0.01	140-220-340- 450	2/4
LSPE (N.LDB 2018)	0.25	44-240 (4)	85-20
Missions in Preparation	survey area [sky fraction]	frequencies [GHz]	resolution [arcmin]
Piper (2017-2020)	0.8	200-600 (4)	36-12
BLAST-TNG	< 0.01	1200, 860, 600	1
EBEX-IDS	0.035	150-360 (7)	8-3
BFORE	0.23	270-600 (3)	4
BSIDE	0.05	600-700	7

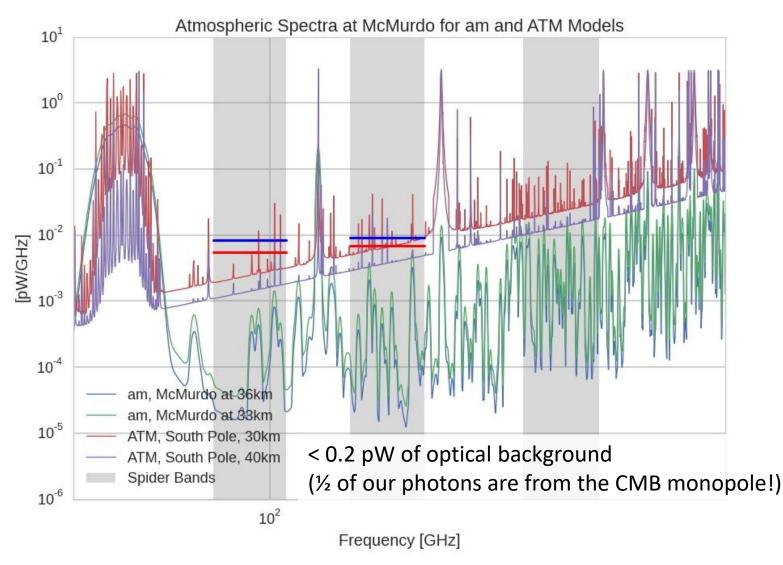
13


Spider 2015: Overview

Sky coverage	About 10 %
Scan rate (az, sinusoid)	3.6 deg/s at peak
Polarization modulation	Stepped cryogenic HWP
Detector type	Antenna-coupled TES
Multipole range	10 < ℓ < 300
Observation time	16 days at 36 km
Limits on r ⁺	0.03

⁺ Ignoring all foregrounds, at 99% confidence

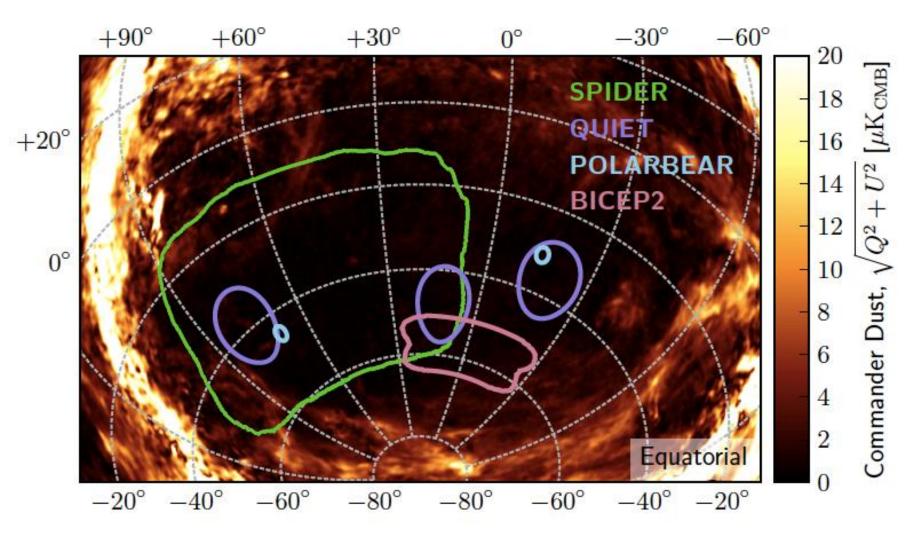
	Frequency [GHz]	
	94	150
Telescopes	3	3
Bandwidth [GHz]	22	36
Optical efficiency	30-45%	30-50%
Angular resolution [*] [arcmin]	42	28
Number of detectors ⁺	652 (816)	1030 (1488)
Optical background [‡] [pW]	≤ 0.25	≤ 0.35
Instrument NET ⁺ [µK∙rts]	6.5	5.1


*FWHM. [†]Only counting those currently used in analysis [‡]Including sleeve, window, and baffle

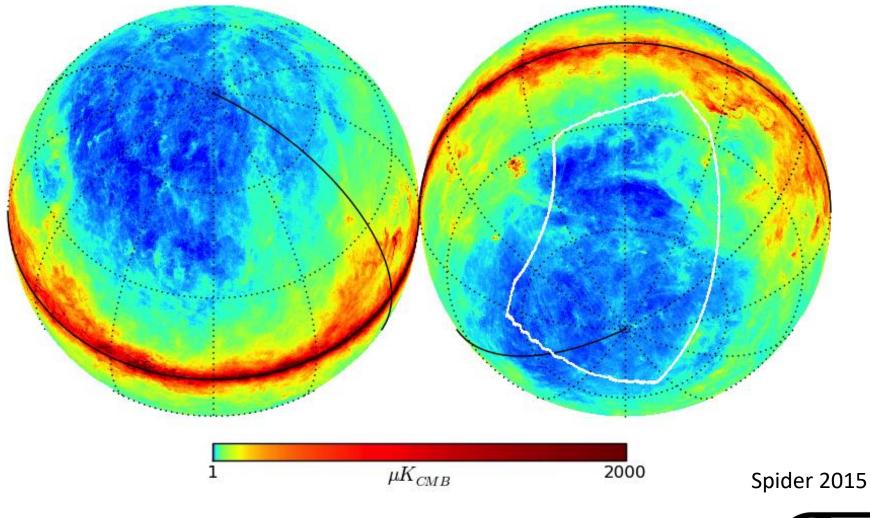
William C. Jones


Sub-orbital radiative environment:

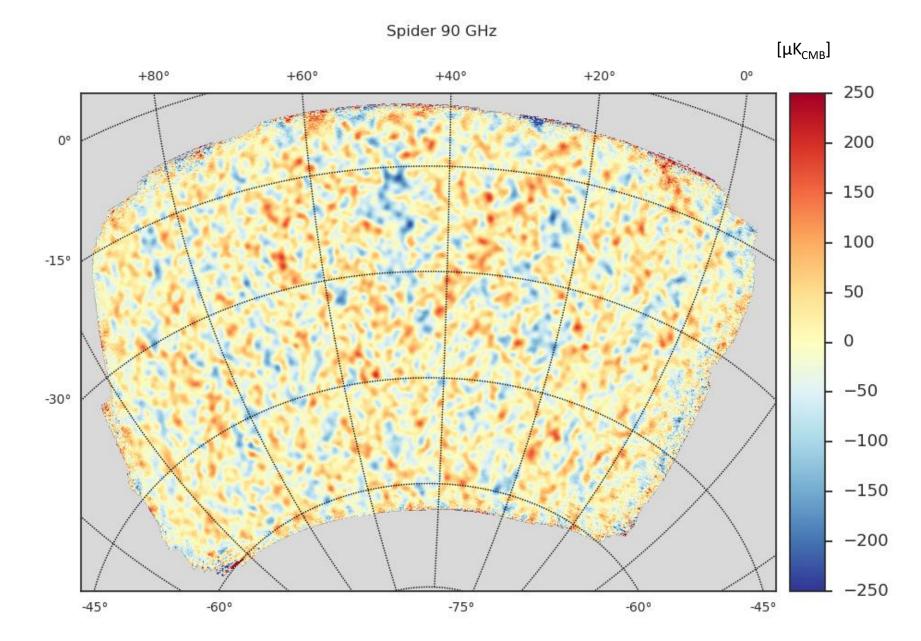
radiative backgrounds comparable to that of Planck HFI


CERN CMB Workshop, May 16, 2016

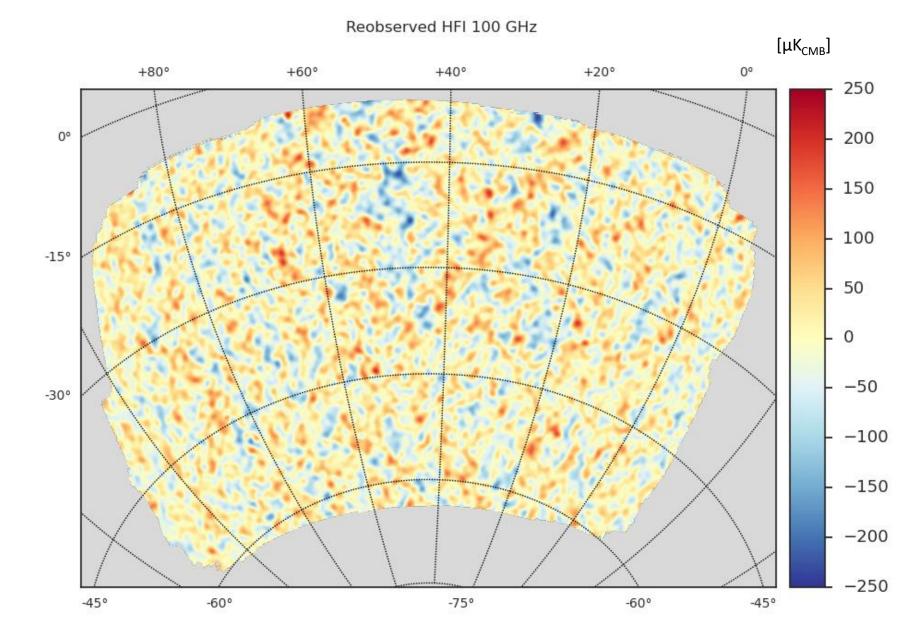
Spider 2015: flight performance


Multipole ℓ

Spider 2015: survey coverage

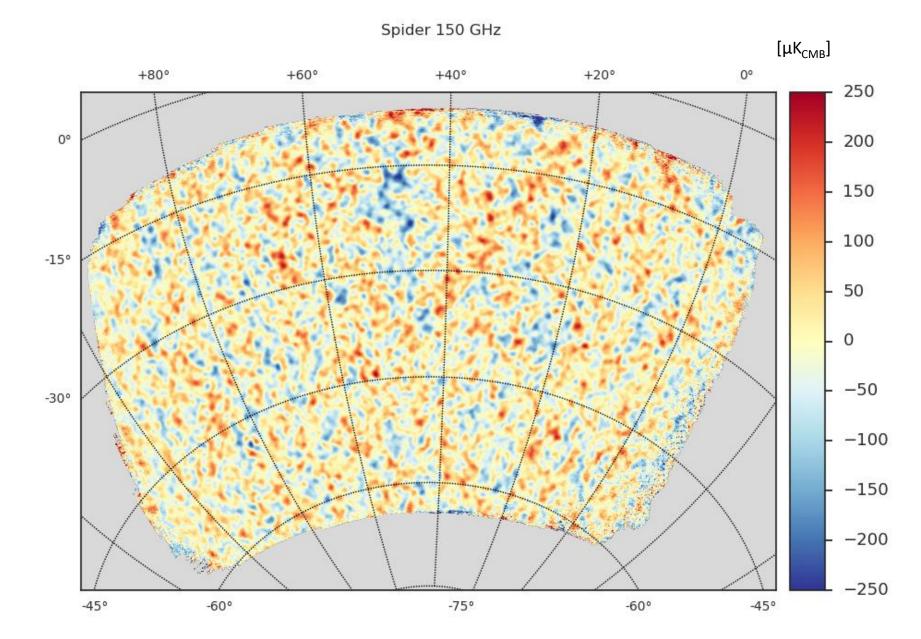


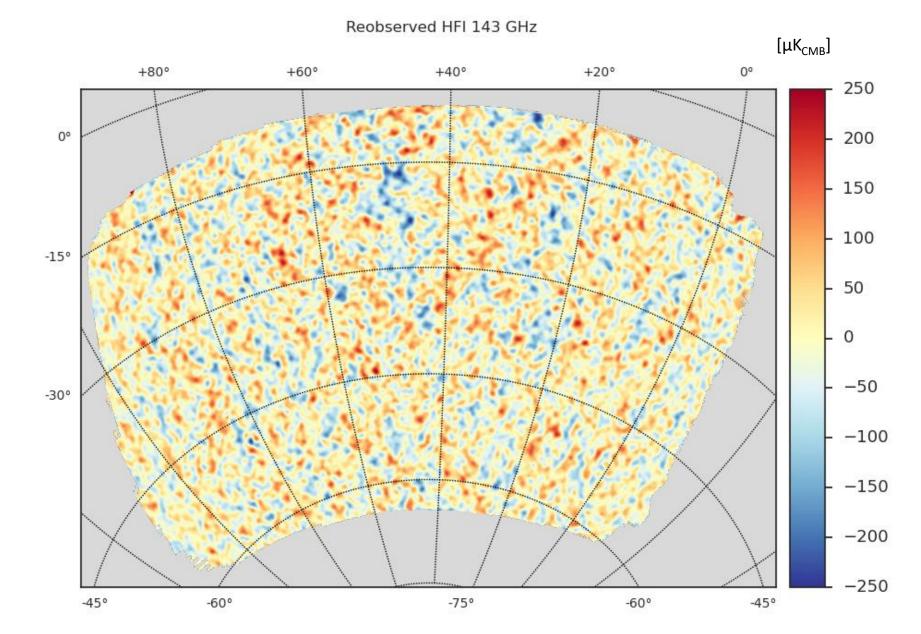
The observational challenge:



willian C. Jones

CENIN CIVID VVUI KSHUP, IVIAY 10, 2010


· 7~1



vviillatti C. JUHES

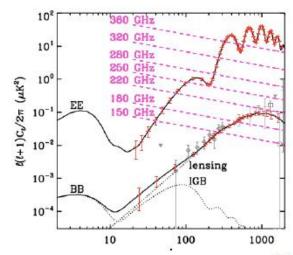
CENIN CIVID VVUI KSHUP, IVIAY 10, 2010

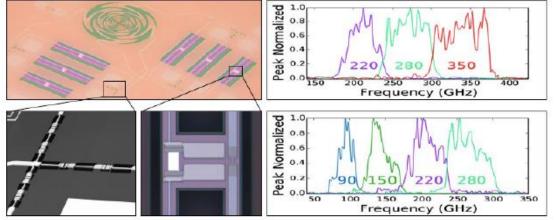
· >~ \

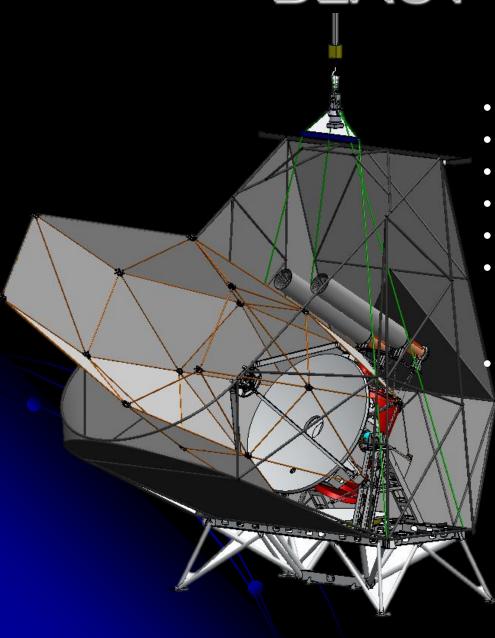
vviillatti C. JUHES

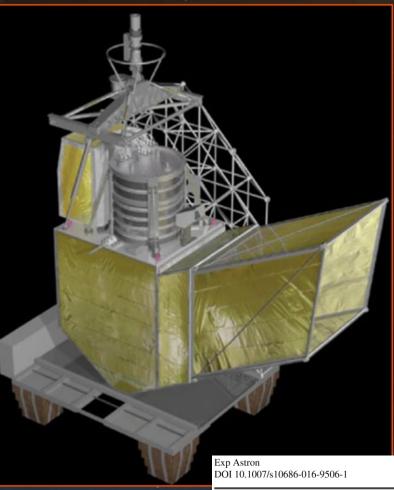

~~

Stacking hot spots : SPIDER


EBEX-IDS


- 7 bands: 150, 180, 220, 250, 280, 320, 360 GHz
- 1500 sq. deg. Co-observe with • BICEP/Keck + Simmons Array
- Sinuous Antenna Trichroic . Pixels (PB2, SPTPol, LiteBIRD)

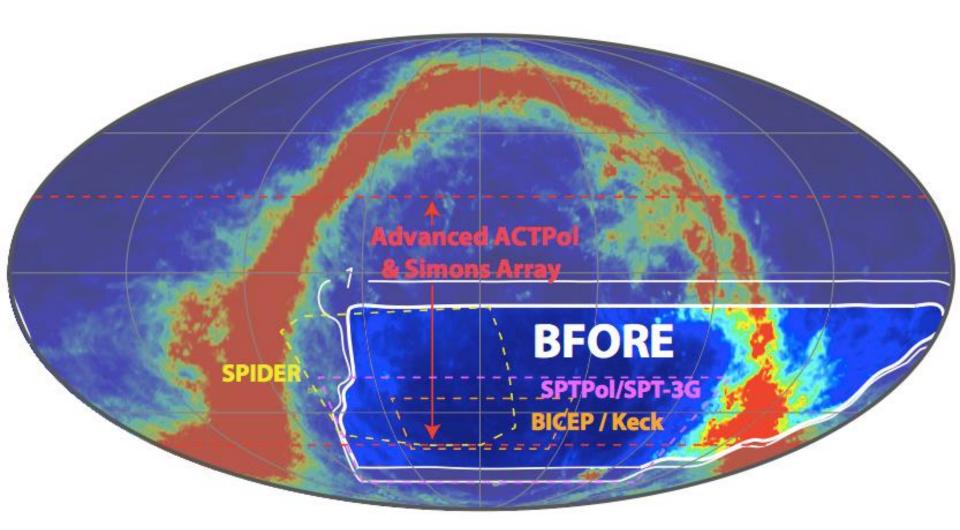



Lee + Westbrook, UCB

BLAST-TNG

- 2.5 meter Carbon Fiber Mirror
- 2200 Polarized KID detectors
- Three bands: 250, 350, and 500 μm
- 22 arcsec resolution at 250 μm
- 28 day flight!
- 10 times the mapping speed of BLAST-pol
 - First flight December 2018 (TBC) with Shared Risk Observing

PILOT

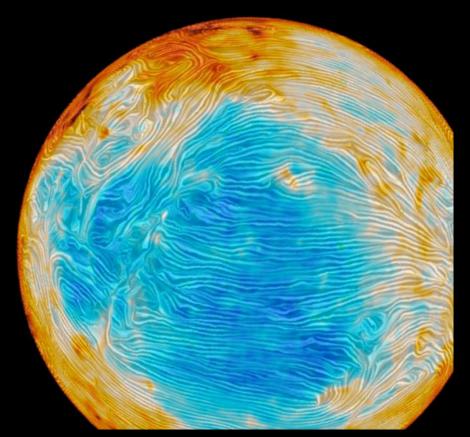

ORIGINAL ARTICLE

PILOT: a balloon-borne experiment to the polarized FIR emission of dust grain in the interstellar medium

Table 1 Key characteristics and performance of the *PILOT* instrument in its nominal configuration. The last lines gives the expected 3σ performance in the two extreme observing modes corresponding to deep (5^{\Box}/hour) and large (150^{\Box}/hour) surveys respectively, where the ^{\Box} symbol stands for square degree. Our estimated polarization sensitivity assumes a dust polarization fraction of 10 %

Primary mirror diameter [mm]	730	
Equivalent focal length [mm]	1800	
Numerical aperture	F/2.5	
Detector temperature [mK]	300	
Mapping speed [[□] /h]	[5-150]	
FOV [°]	1.0 imes 0.8	
	SW Band	LW Band
$\lambda_0 ~[\mu m]$	240	550
ν ₀ [GHz]	1250	545
$\Delta \nu / \nu$	0.27	0.31
Tr(dust)	0.025	0.136
beam FWHM [']	1.9	3.29
Number of Detectors	1024	1024
background [pW/pix]	5.7	4.0
$\operatorname{NEP}_{Det} \left[W/\sqrt{Hz} \right]$	2.010^{-16}	2.010^{-16}
$\operatorname{NEP}_{Phot} \left[W/\sqrt{Hz} \right]$	9.810^{-17}	6.010^{-17}
$\operatorname{NEP}_{Tot}\left[W/\sqrt{Hz}\right]$	2.210^{-16}	$2.1 10^{-16}$
Sensitivity $(3\sigma \text{ in } 3.5')$		
Intensity [MJy/sr]	[0.98-6.28]	[0.33-2.13]
Av [mag]	[0.05-0.30]	[0.12-0.75]
Av polar [mag]	[0.47-2.99]	[1.17-7.48]

BFORE



CERN CMB Workshop, May 16, 2016

BSIDE

A balloon project to map dust polarization with the accuracy required to search for primordial B-modes down to a tensor-to-scalar ratio r = 0.01

Table 2 : Main instrumental requirements					
Primary mirror diameter [mm]	700				
Equivalent focal length [mm]	1800				
Detector temperature [mK]	150 mK (goal) & 2	20 mK (spec)			
Polarisation modulation [Hz]	40 (goal) & 1	0 (spec)			
Total transmission	40 % (goal) & 2	0 % (spec)			
	LF band	HF band			
Central Frequency [GHz]	450	600			
Bandwidth [GHz]	150	200			
Number of detectors	1900 (goal) & 980 (spec)	1900 (goal) & 980 (spec)			
Fraction of good pixels	250	250			
Multiplexing ratio	90 % (goal) & 70 % (spec) From 2.3x2.3 to 3.2x3.2 mm ²	90 % (goal) & 70 % (spec) From 2.3x2.3 to 3.2x3.2 mm ²			
Pixel size	From 2.3x2.3 to 3.2x3.2 mm ²	From 2.3x2.3 to 3.2x3.2 mm ²			
Resolution [arcmin]	5 (goal) & 7 (spec)	5 (goal) & 7 (spec)			
Field of View [degrees]	3	3			
NEP [10 ⁻¹⁷ W.s ^{1/2}]	13	17			
Observing time	72 hours (goal) & 20 hours (spec)				
Observed area	2000 deg ²				

- B-SIDE data to be combined with ground-based observations at 95, 150, 220 GHz and Planck 353 GHz
- We are discussing a joint data analysis with the BICEP/Keck and the Polarbear/ Simons array teams

Bside datasheet

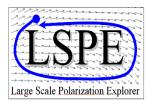
<u>OPTICS:</u>

- M1 = 0.8 m
- M2 and M3 at 50K
- FoV = 3 deg
- Angular resolution (540 GHz) ~ 3 arc-min

DETECTORS:

- Baseline (2018): 493 x 2 = **986 KID**
- Angular resolution (baseline) ~ 7 arc-min
- Electronics power consumption < 150 W
- Cryostat cabled for 2000 KID at the beginning
- Angular resolution (2000 KID) ~ 5 arc-min
- Pixels 23 times bigger than PILOT !!
- Roughly 50-100 pW per pixel
- --> Goal NEP of the order of 2 10⁻¹⁶ W/Hz^{0.5}

BANDS:


- Baseline: single band 450-630 GHz
- PlanB will be compatible with two bands,
- e.g. Band 1: 450-630 GHz, Band 2: as-you-like My choice: Band 1: 450-630GHz, Band 2: 390-540GHz

NO NEED TO DECIDE NOW !!!

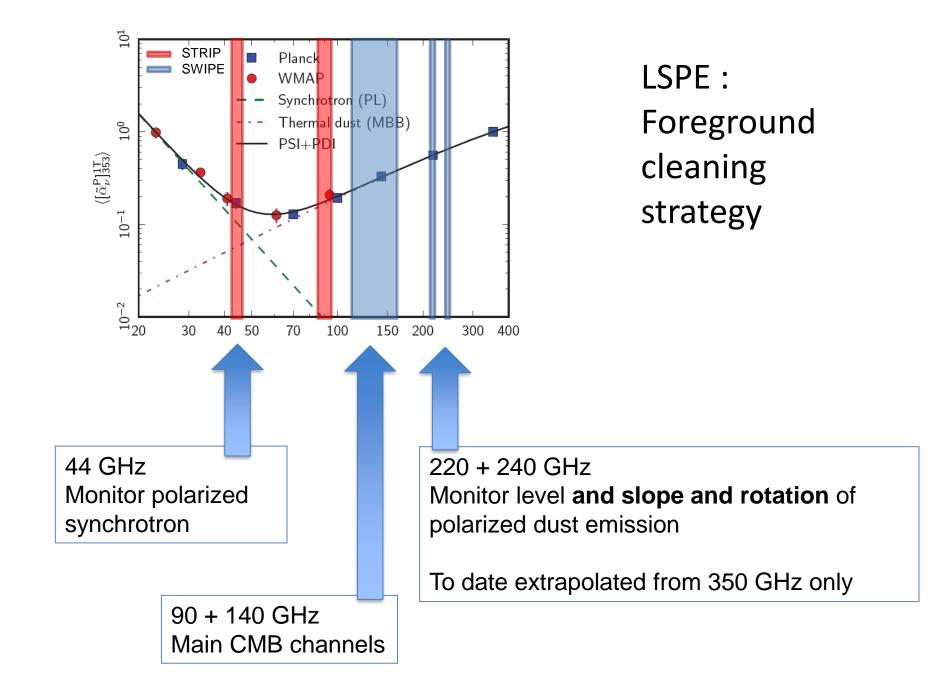
Paris 05/04/2016

Credit: Ken Ganga

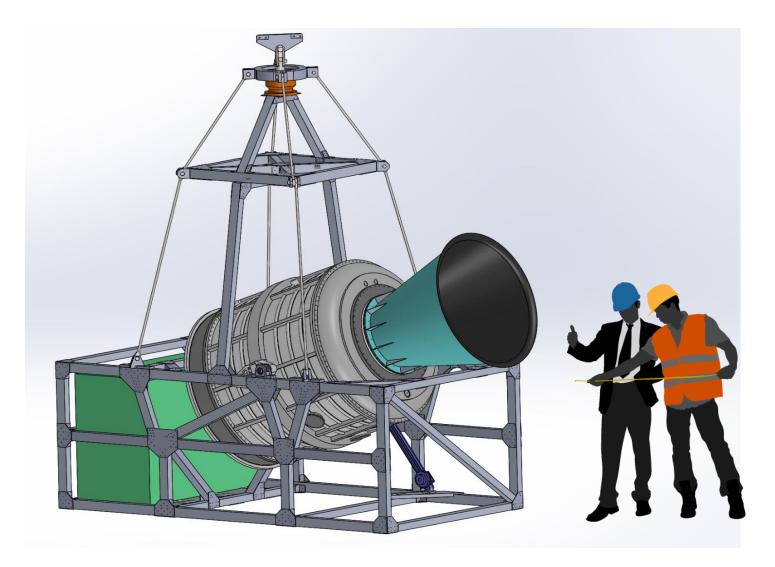
MMIN 22.99

LSPE

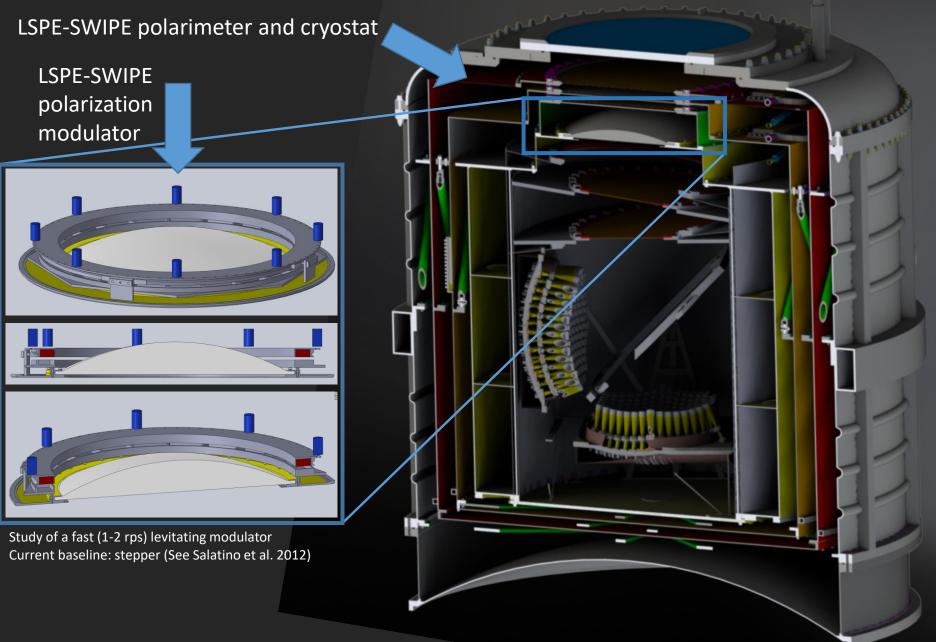
the Large-Scale **Polarization Explorer**


Paolo de Bernardis, Università La Sapienza, Roma, Italy for the LSPE collaboration

Potor	Ado	University of Cardiff
Giorgia	Amico	Dip. Firica Sapionza & INFN Roma1
Alessandro	Baldini	INFN Pira
Papla	Battaglia	Dip. Firica Università di Milana
Elia Stofano		Dip. Firica Sapionza & INFN Romat
Alersandra	Baù	Dip. Firica Università di Milano Bicocca
Carlo	Bomparad	INFN Pira
Marco	Borsanolli	Dip. Firica Università di Milano
Michele	Biarotti	Dip. Firica Uni. Genova & INFN Genova
Androa	Barcalori	IFAC - CNR Firenze
Alerrandro	Buzzolli	Università di Roma TorVergata & INFN Roma2
Paolo	Cabella	Università di Roma TorVergata & INFN Roma2
Francesco	Cavaliere	Dip. Firica Università di Milano
Valentina Eugenio	Corialo Caccia	Dip. Firica Uni. Gonova & INFN Gonova Dip. Firica Tor Vorgata & INFN Roma2
Gabriele	Саррі	Dip. Firica Sapionza & INFN Roma1
Alessandra	Coppolecchia	Dip. Firica Sapionza & INFN Roma1
Daria	Carrini	Dip. Firica Uni. Genova & INFN Genova
Angelo	Cruciani	Dip. Firica Sapionza & INFN Romat
Francosco	Cuttaia	INAF-IASE Balagna
Antonello	D'Addabba	Dip. Firica Sapionza & INFN Roma1
Giuroppo	D'Alerrandra	Dip. Firica Sapionza & INFN Roma1
Paolo	de Bernardir	Dip. Firica Sapionza & INFN Roma1
Giancarla	Do Garporir	Università di Roma TorVergata & INFN Roma2
Matton Marco	Do Gorano Do Potrir	Dip. Firica Uni. Genova & INFN Genova
Marco Francosco	Do Potru Dol Torto	Dip. Firica Sapionza & INFN Roma1 Dip. Firica Università di Milano
Alessandro	Di Marco	Dip. Forca Università di Milano Università di Roma TorVergata & INFN Roma2
Viviana	Fafano	Dip. Firica Tor Vorgata & INFN Roma2
Lorenzo	Finninerchi	Dip. Ing. Ind. Uni. Firenze
Flavia	Fontanelli	Dip. Firica Uni. Gonova & INFN Gonova
Francesco	Forartieri	Università di Ferrara & INFN Ferrara
Christian	Franceschet	Dip. Firica Università di Milana
Luca	Galli	INFN Pira
Flavia Marrima	Gatti Gorvari	Dip. Firica Uni. Genova & INFN Genova Dip. Firica Università di Milano Bicocca
Anna	Gervari Gregoria	Dip. Forica Università di Milano Bicocca Department of Physics - University of Trieste
Daniele	Grazza	Dip. Firica Uni. Gonova & INFN Gonova
Alessandra	Gruppura	INAF/IASF Balagna & INFN Balagna
Riccardo	Gualtieri	Dip. Firica Sapienza & INFN Roma1
Victor	Haynes	University of Manchester
Marco	Incagli	INFN Pira
Nicoletta	Krachmalnico	Dip. Firica Università di Milana
Luca	Lamagna	Dip. Firica Sapionza & INFN Roma1
Marsimiliana	Lattanzi Maffei	Università di Ferrara & INFN Ferrara
Bruno Davido	Maine	University of Manchester Dip. Fisica Università di Milano
Temmare	Marchotti	Dip. Firica Sapionza & INFN Roma1
Silvia	Mari	Dip. Firica Sapionza & INFN Roma1
Aniella	Monnolla	Dip. Firica Università di Milano
Diego	Malinari	Università di Ferrara & INFN Ferrara
Gianluca	Morganto	INAF-IASE Balagna
Federica	Nati	Dip. Firica Sapionza & INFN Roma1
Paolo	Natoli	Università di Ferrara & INFN Ferrara
Ming Wah	Na	University of Manchester
Luca Alessandro	Pagano Paiella	Dip. Firica Sapionza & INFN Romat Dip. Firica Sapionza & INFN Romat
Andrea	Parserini	Dip. Firica Sapionza «III i I noma) Dip. Firica Univorrità di Milano Bicocca
Orcar	Peverini	IEIIT - CNR - Tarina
Francesco	Piacontini	Dip. Firica Sapionza & INFN Roma1
Lucia	Piccirille	University of Manchester
Giampaolo	Pirana	University of Cardiff
Sara	Ricciardi	INAF-IASE Balagna
Paolo	Rissone	Dip. Ing. Ind. Uni. Firenze
Alerria Giovenni	Rocchi Romeo	Dip. Firica Tor Vergata & INFN Roma2 INGV - Roma
Maria	Salatino	INGV - Koma Dip. Firica Sapionza & INFN Roma1
Maura	Sandri	INAF-IASE Bologna
Alessandra	Schillaci	Dip. Firica Sapionza & INFN Roma1
Giovanni	Signarolli	INFN Pira
Franco	Spinolla	INFN Piza
Luca	Stringhotti	INAF-IASE Bologna
Andrea	Tartari	Dip. Firica Università di Milano Bicocca IEIIT - CNR - Torino
Riccardo	Tarcono Tarcono	
Luca Maurizia	Terenzi Temari	INAF - IASF Bologna Dip. Firica Università di Milano
Elizabotta	Temmari	Italian Space Agency
Carole	Tucker	University of Cardiff
Fabrizia	Villa	INAF-IASEBologna
Giuroppo	Virane	IEIIT - CNR - Tarina
Nicola	Viron <i>o</i> Vittorio	Università di Roma TorVergata & INFN Roma2
Nicola Andrea	Virono Vittorio Zacchoi	Università di Roma TorVergata & INFN Roma2 INAF Osservatorio Trieste
Nicola	Viron <i>o</i> Vittorio	Università di Roma TorVergata & INFN Roma2


LSPE in a nutshell

- The Large-Scale Polarization Explorer is :
 - an instrument to measure the polarization of the Cosmic Microwave Background at large angular scales
 - The SWIPE instrument uses a spinning stratospheric balloon payload to avoid atmospheric noise, flying long-duration, in the polar night
 - uses a *polarization modulator* to achieve high stability
- Frequency coverage: 40 250 GHz (5 channels, 2 instruments: STRIP & SWIPE)
- Angular resolution: 1.3° FWHM
- Sky coverage: 20-25% of the sky per flight / year
- Combined sensitivity: 10 µK arcmin per flight
- Current collaboration: Sapienza, UNIMI, UNIMIB, IASFBO-INAF, IFAC-CNR, Uni.Cardiff, Uni.Manchester. INFN-GE, INFN-PI, INFN-RM1, INFN-RM2, INFN-FE
- See astro-ph/1208.0298, 1208.0281, 1208.0164 and forthcoming updates

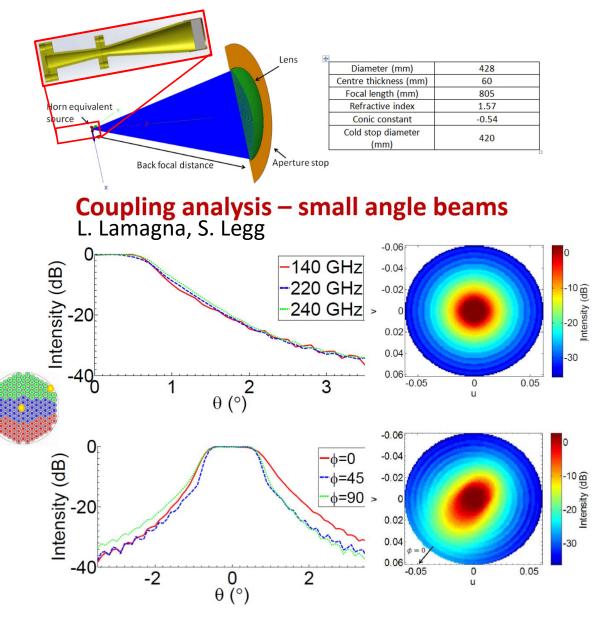


LSPE/SWIPE

LSPE/SWIPE: General system

LSPE/SWIPE: large polarizer and HWP

- Made in Cardiff (G.Pisano P. Ade, C. Tuker)
- Production phase started for polarizer and HWP, thermal filters.


50 cm diameter polarizer – defining principal angle – accurate mearuement of angles

10 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670

LSPE/SWIPE: multimode optical system

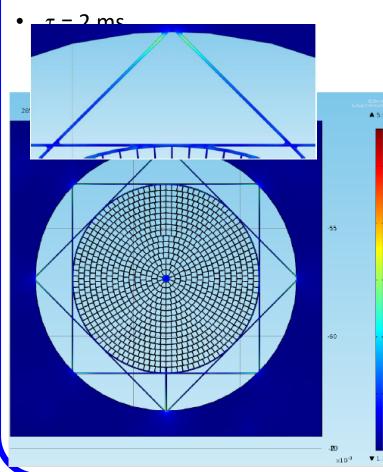
 Whole system multi.mode EM simulation described in: Legg, Lamagna, Coppi, de Bernardis, Giuliani, Gualtieri, Marchetti, Masi, Pisano, Maffei, Development of the multi-mode horn-lens configuration for the LSPE-SWIPE B-mode experiment Proc. SPIE 9914, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, 991414 doi:10.1117/12.2232400

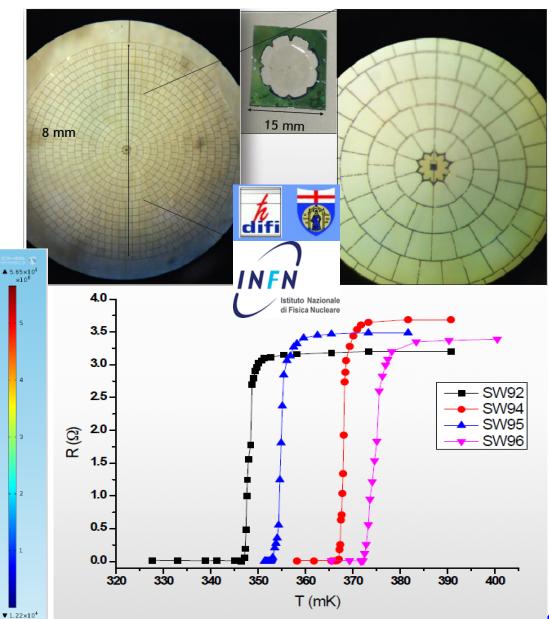
INFN Istituto Nazionale di Fisica Nucleare Sezione di Roma

LSPE horns & bolo holders

Large Throughput multimode detectors: 8800 modes collected by 330 sensors

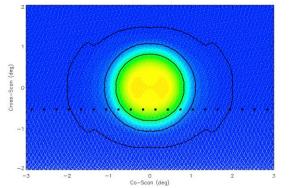
Focal plane detector flanges (gold plated Al6061, 40 cm side).


LSPE horns & bolo holders


Large Throughput multimode detectors: 8800 modes collected by 330 sensors

Focal plane detector flanges (gold plated Al6061, 40 cm side).

SWIPE - multimode absorbers & TES


- The absorbers are large Si₃N₄ spider-webs (8 mm diameter, multimode)
- Sensors are Ti-Au TES
- Photon noise limited

Observations and Calibration Plan

- Scanning strategy: payload spin in azimuth, at 3 rpm (18°/s)
- Coverage of the same sky area by the two instruments
- Elevation changes once a day, at the same time for both instruments
- Specific calibration observations of
 - Jupiter (to map the main beam, see figure below, samples = white dots)

- the Crab nebula and the Moon Limb (to calibrate the main axis of the polarimeters)
- the Moon can be used to map sidelobes

LSPE coverage for different sets of elevation changes. The first column reports the boresight elevation range in degrees for the two instruments. Second column, the full coverage. Third column, the coverage after masking the galaxy with the WMAP polarization mask.

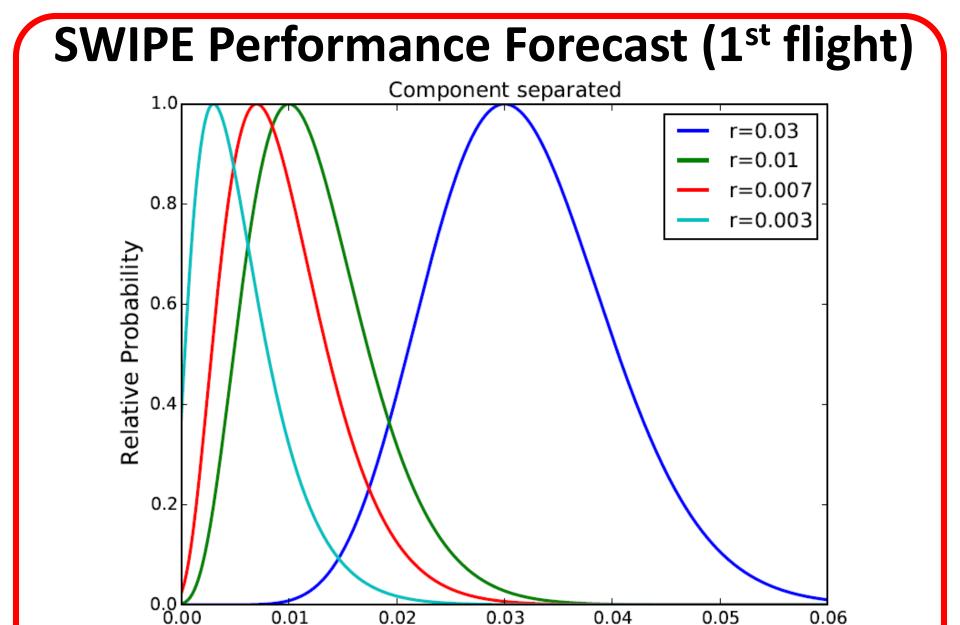
Elevation	Coverage	Unmasked
SWIPE [30-40]	31%	23%
SWIPE [40-50]	27%	20%
SWIPE 35	24%	19%
SWIPE 45	22%	18%
SWIPE [30-50]	35%	26%
STRIP 45	27%	20%
STRIP 30	33%	24%

STRIP

SWIPE

Source	Culmination (deg)	S/N per sample at 44 GHz	S/N per sample at 90 GHz	S/N per sample at 145 GHz	S/N per sample at 245 GHz
Moon	30	37500	200000	700000	2000000
Crab	34	20	18	23	28
Mars	0	0.30	1.6	5.6	18
Jupiter	27	15	80	275	850
Saturn	-6	1.4	7	24	70
Uranus	16	0.05	0.24	0.8	2.5

Sources culmination angle, and expected S/N per sample. Sampling rate is set at 60 Hz. We assume full Moon, as it is when it is observable by LSPE. The Crab flux is based on the free-free spectrum reported in Macías-Pérez, et al. Ap. J., 711, 417 (2010)


Performance Forecast

 The presence of the HWP allows to fully exploit the sensitivity of LSPE-SWIPE.

 Realistic simulations to assess systematic effects (mainly beam asymmetries) which become irrelevant if the HWP is used.

 The final sensitivity target for r is < 0.01

tensor-to-scalar ratio

... Pagano, F. Piacentini

Current Status

- LSPE is fully funded by ASI and INFN
- STRIP will operate from the ground (Tenerife) covering the same sky as SWIPE
- STRIP and SWIPE in due course of development, consistent with a 1st launch opportunity from Svalbard (78°N) in Winter 2018/19 for SWIPE and start of data taking in 2018 for STRIP.
- Baseline science expected from (one flight + 1 year) is competitive with current gen B-mode experiments – and contributions to polarized foreground science will provide a great complement the CMB science.

OLIMPO

- The OLIMPO experiment is a first attempt at spectroscopic measurements of CMB anisotropy.
- A large balloon-borne telescope with a 4-bands photometric array and a plug-in room temperature spectrometer
- see http://planck.roma1.infn.it/olimpo for a collaborators list and full details on the mission
- Main scientific targets:
 - SZ effect in clusters –> unbiased estimates of cluster parameters
 - Spectrum of CMB anisotropy –> anisotropic spectral distortions

A&A 538, A86 (2012) DOI: 10.1051/0004-6361/201118062 © ESO 2012

Low-resolution spectroscopy of the Sunyaev-Zel'dovich effect and estimates of cluster parameters

P. de Bernardis^{1,2}, S. Colafrancesco^{3,4}, G. D'Alessandro¹, L. Lamagna^{1,2}, P. Marchegiani³, S. Masi^{1,2}, and A. Schillaci^{1,2}

- ¹ Dipartimento di Fisica, Università di Roma "La Sapienza", Roma, Italy e-mail: paolo.debernardis@roma1.infn.it
- ² INFN Sezione di Roma 1, Roma, Italy
- ³ INAF Osservatorio Astronomico di Roma, Monte Porzio Catone, Italy
- ⁴ School of Physics, University of the Witwatersrand, Johannesburg Wits 2050, South Africa

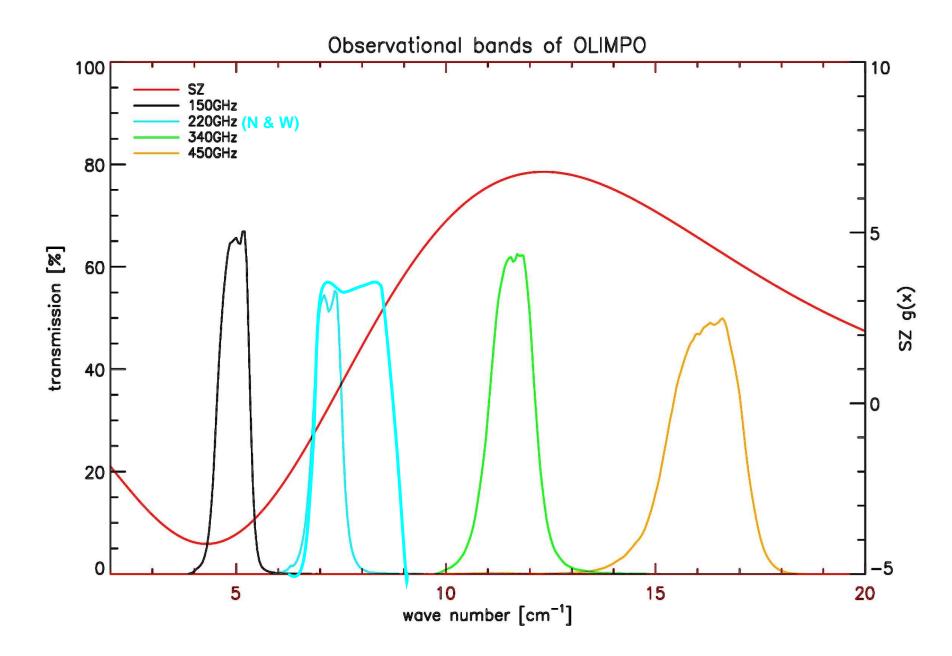
Received 9 September 2011 / Accepted 8 November 2011

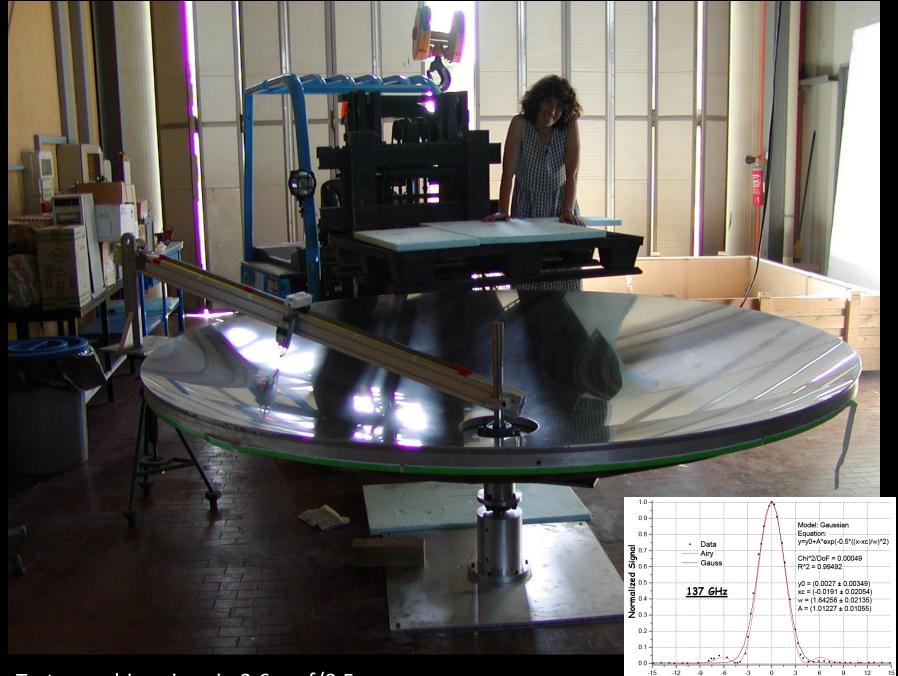
ABSTRACT

Context. The Sunyaev-Zel'dovich (SZ) effect is a powerful tool for studying clusters of galaxies and cosmology. Large mm-wave telescopes are now routinely detecting and mapping the SZ effect in a number of clusters, measure their comptonisation parameter and use them as probes of the large-scale structure and evolution of the universe.

Aims. We show that estimates of the physical parameters of clusters (optical depth, plasma temperature, peculiar velocity, non-thermal components etc.) obtained from ground-based multi-band SZ photometry can be significantly biased, owing to the reduced frequency coverage, to the degeneracy between the parameters and to the presence of a number of independent components larger than the number of frequencies measured. We demonstrate that low-resolution spectroscopic measurements of the SZ effect that also cover frequencies >270 GHz are effective in removing the degeneracy.

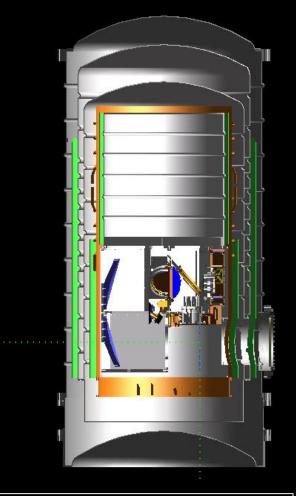
Methods. We used accurate simulations of observations with lines-of-sight through clusters of galaxies with different experimental configurations (4-band photometers, 6-band photometer, multi-range differential spectrometer, full coverage spectrometers) and dif-

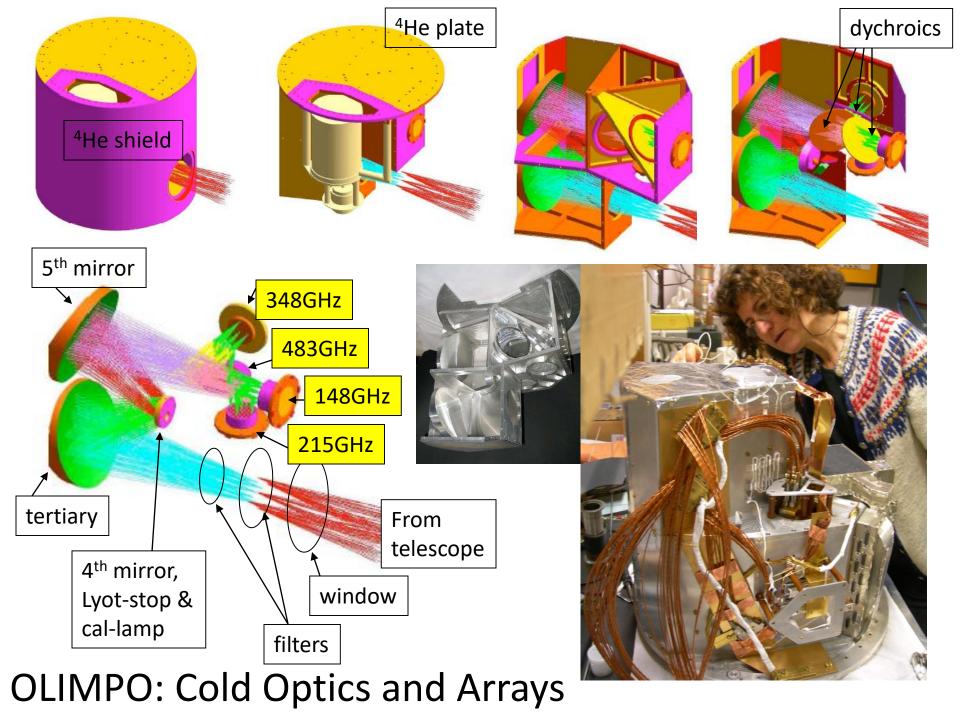

OLIMPO

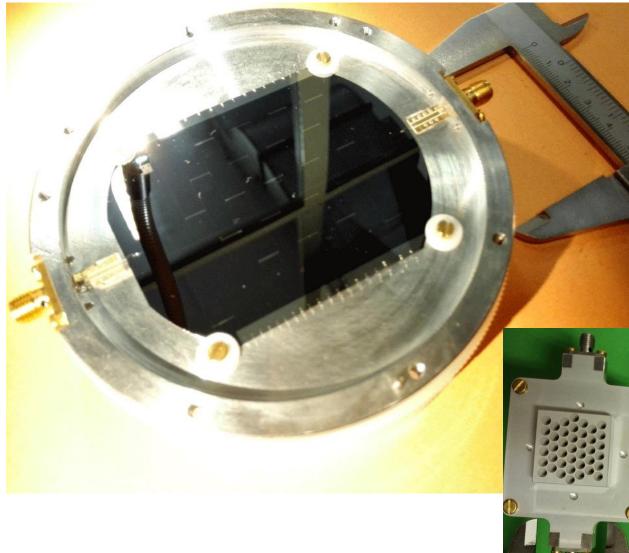


- Long Duration Balloon experiment for mm & sub-mm astronomy
- Operates from the stratosphere - launch from Svalbard
- Cassegrain telescope, 2.6m aperture
- Multifrequency arrays of bolometers
- Low resolution spectrometer

ch	v_{eff} [GHz]	$\Delta v_{\rm FWHM}$ [GHz]	Res. [']
Ι	148.4	21.5	4.2
Π	215.4	20.6	2.9
III	347.7	33.1	1.8
IV	482.9	54.2	1.8




Beam Size - Elevation (arcmin)


Test specchio primario 2.6m - f/0.5

0.3K cryostat (made in Sapienza) 65L superfluid ⁴He 70L liquid N 40LSTP ³He refrigerator 50L experimental volume Hold time – 15 days @ 0.3K



OLIMPO Kinetic Inductance Detectors

AL LEKIDs @ 140, 200, 340, 480 GHz

100-600 MHz res.

CNR-IFN + Sapienza

OLIMPO'S DIFFERENTIAL SPECTROMETER

telescope

Jetector a. tal.

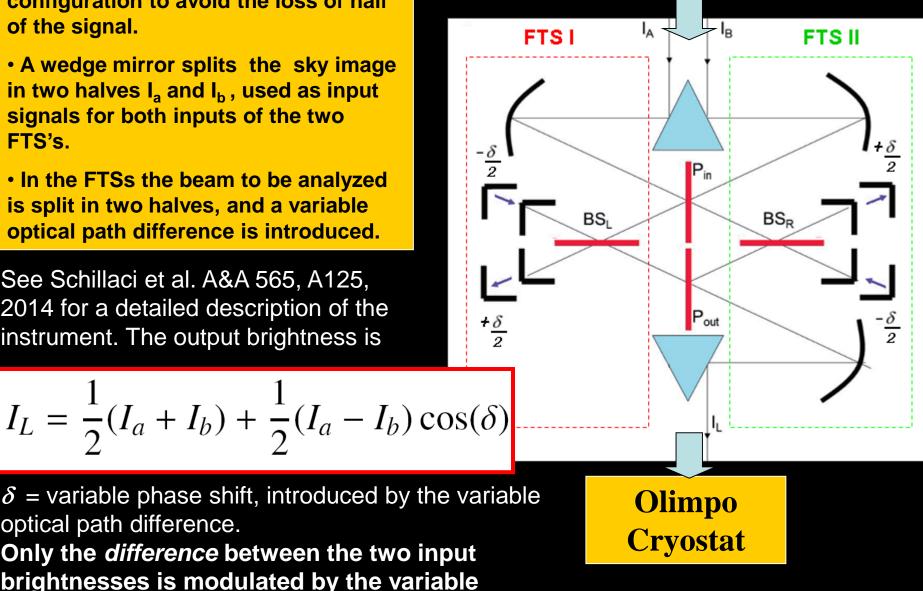
A Differential Fourier Transform Spectrometer (DFTS). Similar to COBE-FIRAS but... .. rather than measuring the brightness difference between the sky and an internal blackbody, it measures the brightness difference between two directions in the sky

210GHz

145GHz and all intern

480GHz

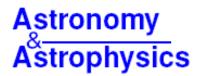
ediate frequencie


 The instrument is based on a double **Martin Puplett Interferometer** configuration to avoid the loss of half of the signal.

 A wedge mirror splits the sky image in two halves I_a and I_b, used as input signals for both inputs of the two FTS's.

 In the FTSs the beam to be analyzed is split in two halves, and a variable optical path difference is introduced.

See Schillaci et al. A&A 565, A125, 2014 for a detailed description of the instrument. The output brightness is


Olimpo Telescope

 δ = variable phase shift, introduced by the variable optical path difference.

Only the *difference* between the two input brightnesses is modulated by the variable optical path difference.

A&A 565, A125 (2014) DOI: 10.1051/0004-6361/201423631 © ESO 2014

Efficient differential Fourier-transform spectrometer for precision Sunyaev-Zel'dovich effect measurements

Alessandro Schillaci¹, Giuseppe D'Alessandro¹, Paolo de Bernardis¹, Silvia Masi¹, Camila Paiva Novaes², Massimo Gervasi³, and Mario Zannoni³

¹ Dipartimento di Fisica, Università di Roma "La Sapienza", Roma, Italy

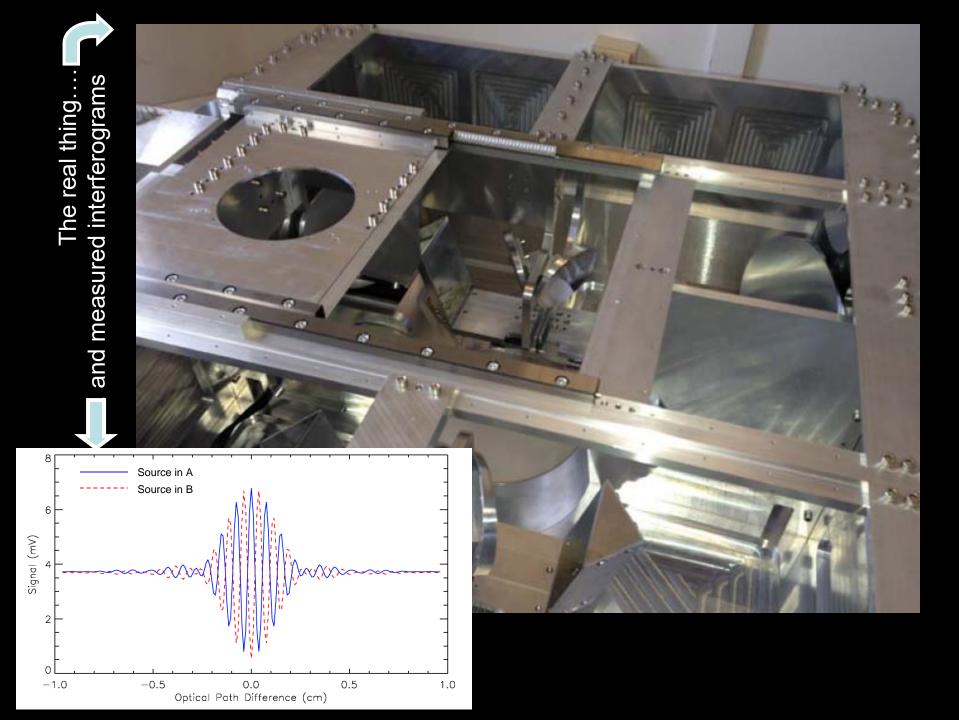
e-mail: alessandro.schillaci@roma1.infn.it

² Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP, Brazil

³ Dipartimento di Fisica G. Occhialini, Universitá Milano Bicocca, Milano, Italy

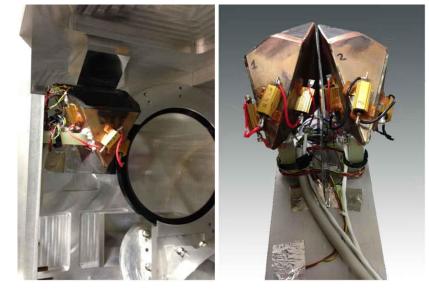
Received 13 February 2014 / Accepted 11 April 2014

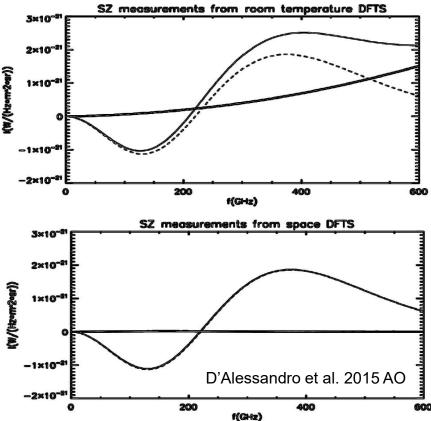
ABSTRACT


Context. Precision measurements of the Sunyaev-Zel'dovich effect in clusters of galaxies require excellent rejection of common-mode signals and wide frequency coverage.

Aims. We describe an imaging, efficient, differential Fourier transform spectrometer (FTS), optimized for measurements of faint brightness gradients at millimeter wavelengths.

Methods. Our instrument is based on a Martin-Puplett interferometer (MPI) configuration. We combined two MPIs working synchronously to use the whole input power. In our implementation the observed sky field is divided into two halves along the meridian, and each half-field corresponds to one of the two input ports of the MPI. In this way, each detector in the FTS focal planes measures the difference in brightness between two sky pixels, symmetrically located with respect to the meridian. Exploiting the high commonmode rejection of the MPI, we can measure low sky brightness gradients over a high isotropic background.


Results. The instrument works in the range $\sim 1-20 \text{ cm}^{-1}$ (30-600 GHz), has a maximum spectral resolution 1/(2 OPD) = 0.063 cm⁻¹ (1.9 GHz), and an unvignetted throughput of 2.3 cm²sr. It occupies a volume of $0.7 \times 0.7 \times 0.33 \text{ m}^3$ and has a weight of 70 kg. This design can be implemented as a cryogenic unit to be used in space, as well as a room-temperature unit working at the focus of suborbital and ground-based mm-wave telescopes. The first in-flight test of the instrument is with the OLIMPO experiment on a stratospheric balloon; a larger implementation is being prepared for the Sardinia radio telescope.


Key words. cosmic background radiation - instrumentation: spectrographs - techniques: spectroscopic - galaxies: clusters: general

CMRR

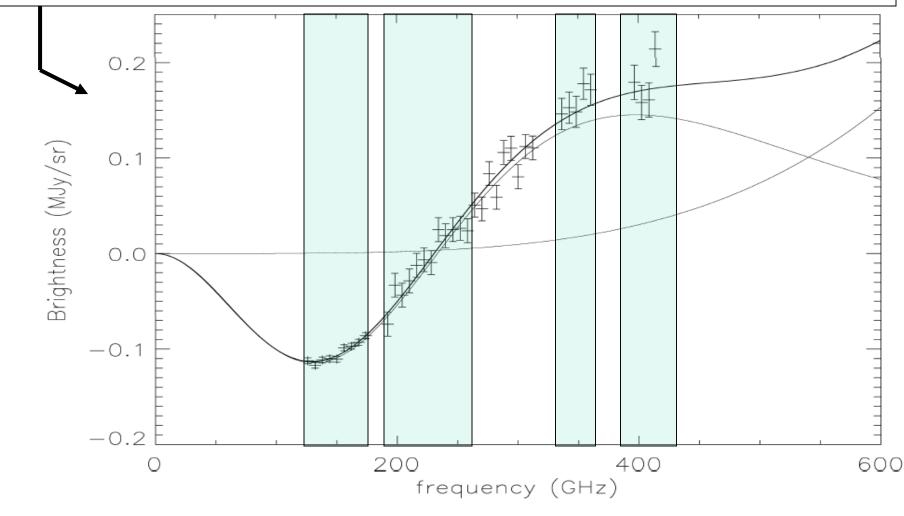
- The differential signal (SZ) is much smaller than the common mode, which is CMB + instrument emissivity (a few %) + residual atmosphere.
- We have measured the common-mode rejection ratio of the FTS using custom temperature-controlled blackbody sources at the two entrance ports of the FTS.
- It turns out that the CMRR of our DFTS is <-55dB
- This means that the offset is less than the SZ signal in OLIMPO, and will be much less than the SZ signal in a cryogenic/space implementation.

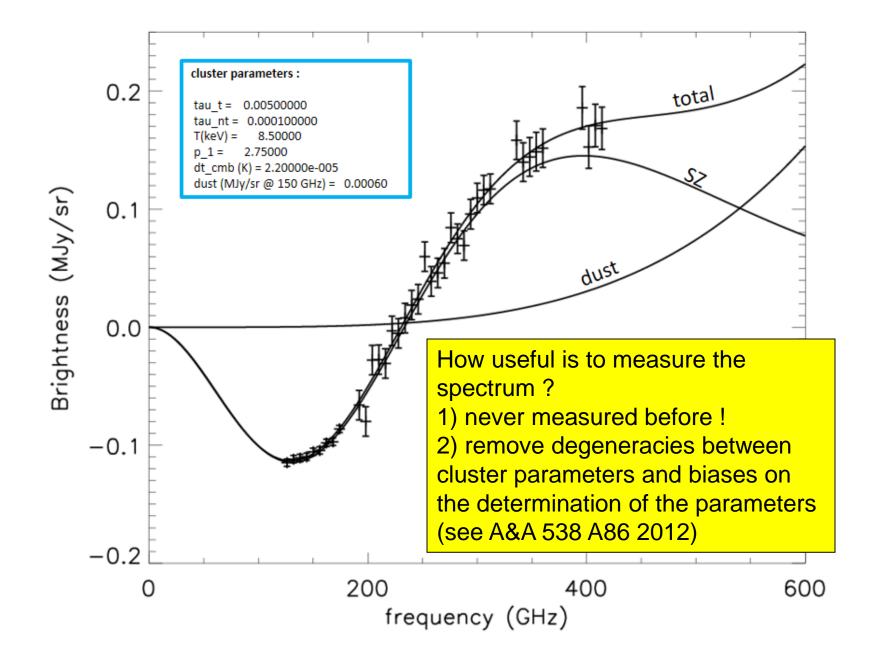
Telescope / primary mirror DFTS cryostat / detectors arrays

Main components of OLIMPO integrated on the payload

Expected performance for OLIMPO (photon noise limited)

OLIMPO performance: spectrometer configurations, single detector of each array

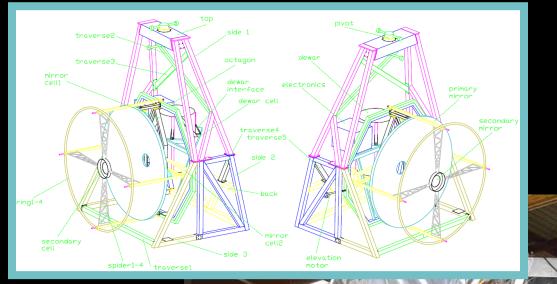

Band (GHz)	125-175	190-315 (wide)	200-225 (narrow)	330-365	450-500
FWHM (arcmin)	5	3.5	3.5	2	2
Throughput (m ² sr)	6.3x10 ⁻⁶	3.1x10 ⁻⁶	3.1x10 ⁻⁶	1.0x10 ⁻⁶	1.0x10 ⁻⁶
Background (pW)	36	122	17	20	54
Optical NEP (aW/sqrt(Hz))	200	400	140	170	290
Number of 6 GHz bins in band	9	21	4	5	8
Error per 6 GHz bin	3	12	5	16	28
(1 sigma, 3 hours) in kJy/sr					


OLIMPO performance: photometer configurations, single detector of each array

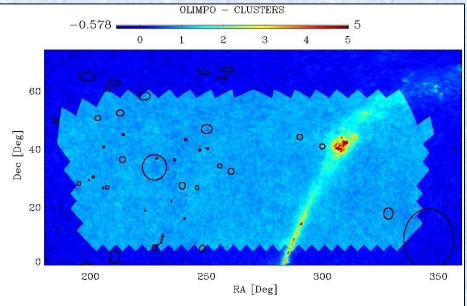
Band (GHz)	125-175	190-315	200-225	330-365	450-500
		(wide)	(narrow)		
FWHM (arcmin)	5	3.5	3.5	2	2
Throughput (m ² sr)	6.3x10 ⁻⁶	3.1x10 ⁻⁶	3.1x10 ⁻⁶	1.0x10 ⁻⁶	1.0x10 ⁻⁶
Background (pW)	11	35	5	6	15
Optical NEP (aW/sqrt(Hz))	100	200	70	85	150
NET _{смв} (µK/sqrt(Hz))	80	115	200	780	2500

In a FTS the spectral resolution can be changed (changing the path of the moving mirror). Mind the noise, however: it is proportional to the inverse of the spectral binwidth. In the case of OLIMPO, with a spectrometer at 250K, photon noise is important.

1.8 GHz resolution: About 110 independent spectral bins, within optimized bands.6 GHz resolution: About 34 independent spectral bins, within the same bands.



OLIMPO calibration night (Rome, 25/4/2014) T_{atm}(350GHz)=0.001 !!

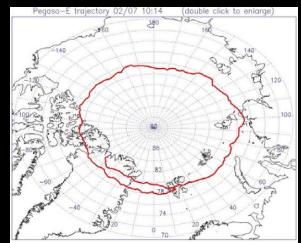


The Payload

The OLIMPO payload prepared for a longduration stratospheric flight, at the airport of Longyearbyen (Svalbard) on July 3rd, 2014.

Observation Program

- In a circumpolar summer long duration flight (>200h) we plan to observe 40 selected clusters and to perform a blind deep integration on a clean sky region
- We have optimized the observation plan distributing the integration time among the different targets according to their brightness and diurnal elevation.


1	: 1	TD			NAME		
	ind	D	RA	Dec	TIME	frac	NAME
12	0	1	212.83	52.2	18000	1	3C295CLUSTER
	1	40	194.95	27.98	3600	0	ABELL1656
1	2	43	203.13	50.51	3600	1	ABELL1758
18	3	44	205.48	26.37	3600	1	ABELL1775
	4	45	207.25	26.59	3600	1	ABELL1795
13	5	48	216.72	16.68	18000	1	ABELL1913
0	6	49	223.18	16.75	11360.88	1.27	ABELL1983
22	7	50	223.63	18.63	18000	1	ABELL1991
	8	51	223.21	58.05	5640.53	1.28	ABELL1995
	9	53	227.56	33.53	18000	1	ABELL2034
6	10	54	229.19	7	3600	1	ABELL2052
143	11	55	230.76	8.64	3600	1	ABELL2063
18	12	56	234.95	21.77	3600	1	ABELL2107
	13	57	236.25	36.06	18000	1	ABELL2124
1	14	58	239.57	27.23	3600	1	ABELL2142
	15	59	240.57	15.9	3600	1	ABELL2147
	16	61	247.04	40.91	18000	1	ABELL2197
	17	62	247.15	39.52	3600	1	ABELL2199
2	18	63	248.19	5.58	3600	1	ABELL2204
	19	65	250.09	46.69	3600	1	ABELL2219
	20	66	255.68	34.05	7230	1.49	ABELL2244
	21	69	260.62	32.15	18000	1	ABELL2261
P	22	70	290.19	43.96	3600	1	ABELL2319
22	23	71	328.39	17.67	3600	1	ABELL2390
	24	98	241.24	23.92	13045.75	1.1	AWM4
1	25	100	299.87	40.73	18000	1	CYGNUSA
18	26	101	201.2	30.19	18000	1	GHO1322+3027
	27	102	241.11	43.08	18000	1	GHO1602+4312
53	28	107	230.46	7.71	3600	1	MKW03S
0	29	120	228.61	36.61	18000	1	MS1512.4+3647
22	- 30	121	245.9	26.56	13147.05	1.1	MS1621.5+2640
	31	128	201.15	13.93	18000	0	NGC5129GROUP
	32	134	199.34	29.19	18000	1	RDCSJ1317+2911
6	- 33	143	231.17	9.96	18000	1	RXJ1524.6+0957
-	34	150	211.73	28.57	18000	1	WARPJ1406.9+2834
15	35	151	213.8	36.2	18000	1	WARPJ1415.1+3612
	36	161	194.02	25.95	18000	0	[VMF98]128
	37	162	203.74	37.84	18000	1	[VMF98]139
	38	163	205.71	40.47	18000	1	[VMF98]148
	39	164	214.12	44.78	18000	1	[VMF98]158
2	40	165	250.47	40.03	18000	1	[VMF98]184

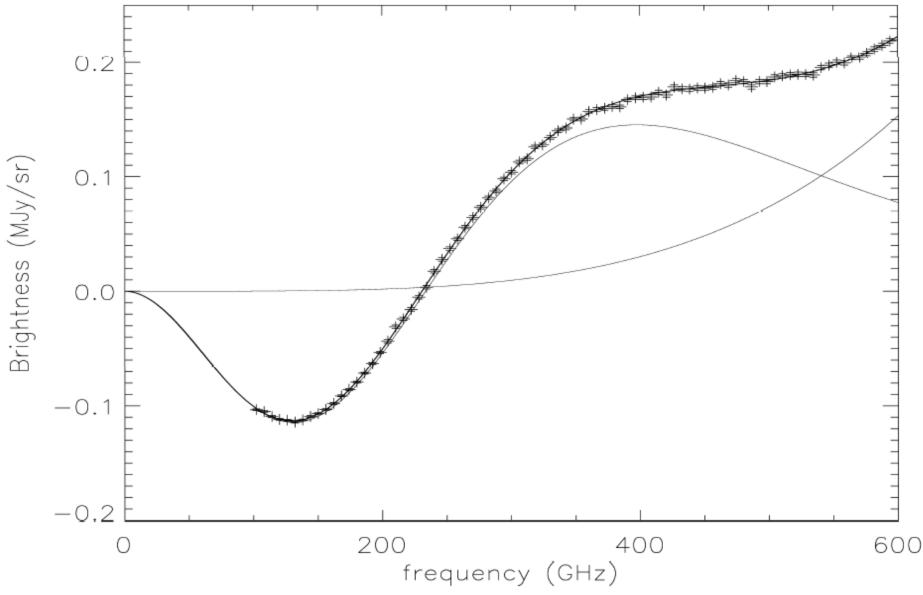
- We have flown long duration stratospheric balloons around the North Pole launching from Longyearbyen (Svalbard) both in the summer (heavy lift payloads) and in winter (pathfinders) [see Peterzen, S., Masi, S., et al., Mem. S. A. It., 79, 792-798 (2008), and PdB+SM Proc. of the I.A.U., 8, 208-213 (2013)]
- In this way CMB experiments can access most of the northern sky in a single flight,
 - within a cold and very stable environment
 - Accumulating more than 10 days of integration at float (38 km altitude).

Top: Ground path of a flight performed in June 2007. **Bottom left:** Launch of a heavy-lift balloon from the Longyearbyen airport (Svalbard Islands, latitude 78°N).

 OLIMPO will have its first flight in the Arctic (2016?) and the second one from Antarctica (2018 if recovered well)

Polar flights

- The OLIMPO spectrometer is the prototype for a similar Differential Fourier Transform Spectrometer to be flown on the Millimetron space mission
- So, once again, stratospheric balloons are effectively used as pathfinders for satellite experiments.


РадиоАстрон

Millimetron ASC Moscow ROSCOSMOS

Antenna diameter: 10 m
Range of wavelengths:
0.01 – 20 mm
Bolometric sensitivity
(λ0.3mm, 1h integration):
5x10⁻⁹ Jy
Interferometry sensitivity
(λ0.5mm, 300s integration,
16GHz bw) : 10⁻⁴ Jy
Interferometer beam:
10⁻⁹ arcsec

3 hours of observations of a rich cluster with a DFTS on Millimetron Absolutely outstanding. USING A PHOTON NOISE LIMITED BOLOMETER IN THE COLD ENVIRONMENT OF L2 WITH A 4K TELESCOPE

Conclusions

- Balloons offer a great deal of opportunities for CMB research.
- They will add reliability to ground based Bmodes measurements (waiting for a final space mission, for which they should be used to qualify instruments / detectors / methods)
- Original/new satellite-based science can and should be first implemented using balloonborne experiments.