SZ (and other "CMB" observations) as a Probe of Cosmic Structure and Baryonic Physics

> James G. Bartlett APC – Université Paris Diderot

Towards the European Coordination of the CMB Programme Florence, IT, 6-7 September 2017

### "CMB" Observations

- Temperature & Polarization
- 10s-100s of GHz
- Order arcmin angular resolution
- Order microK-arcmin sensitivity
- Large sky coverage

### Science Breakdown

- Cluster cosmology SZ effect

   Dark energy, neutrino mass, modified gravity
- Tracing the baryons SZ effect & dust
  - Cluster Astrophysics
  - Galaxy formation
  - Impact on P(k) important for Stage IV dark energy surveys
- Tracing the matter CMB lensing

   Tomographic reconstruction of P(k,z)
   Object masses to high redshift
- Reionization SZ effect



• European CMB, Florence, 9/2017

### Vista Point



cosmic microwave background (CMB) • European CMB, Florence, 9/2017

Reionization



The cosmic web of LSS: Illustris Simulations (http://www.illustris-project.org)

Galaxy cluster







#### 90% of the Baryons are here!



#### Most baryons are in the CGM/IGM and remain elusive!

• • •

Baryons make up ~15% of the total cosmic matter density

What are they doing?

# A Baryon Probe

- Thermal Sunyaev-Zeldovich (SZ) Effect

   Direct measure of gas thermal energy
- Kinetic SZ Effect

   Gas density and velocity
- Dust Emission
  - Important at "CMB" observation frequencies
  - Tracer of star formation

### And a Matter Probe

Planck 2015

- CMB lensing (see talk by A. Lewis)
- LSS matter distribution





• European CMB, Florence, 9/2017



### And a Matter Probe



### And a Matter Probe



- Measure object masses
- Reaches to much higher z than shear

### A Proven Concept

ACTPol: Madhavacheril et al. (2015) 0.05 0.04 0.03  $\theta_y(\operatorname{arcminutes})$ 0.02 0.01 0.00  $\kappa$ -0.01 -0.02 -0.03 -0.04  $-10_{-10}$ -0.05 10  $\theta_r$  (arcminutes) SPT: Baxter et al. (2017)





- ACTPol: 12,000 CMASS galaxies  $3.2\sigma$
- *Planck*: 439 SZ clusters  $5\sigma$
- SPT: 513 SZ clusters (2015)  $3.1\sigma$
- SPT: 3697 ReMaPPer clusters  $6.5\sigma$

J.G. Bartlett • 16

### "CMB" Observations

- Temperature & Polarization
- 10s-100s of GHz
- Order arcmin angular resolution
- Order microK-arcmin sensitivity
- Large sky coverage

Probe of CGM/IGM, stellar production and total mass

## Example Applications

• European CMB, Florence, 9/2017

### Galaxy Clusters

- Find clusters with SZ out to high redshifts (z>2)
- Measure their mass with CMB lensing

   ~1% mass calibration out to z>2
- Astrophysics
- Cosmology

### Galaxy Clusters



### Galaxy Clusters

Madhavacheril et al. (2017) CMB-S4 (see talk by J. Carlstrom)

Madhavacheril et al. (2017) CMB-S4



### **Galaxy Formation**

• European CMB, Florence, 9/2017

### **Galaxy Formation**

#### Is shockingly inefficient:

< 10% of baryons make stars

Why?

• European CMB, Florence, 9/2017

### The Circumgalactic Medium

- Bulk of the baryons is in the CGM/IGM
- Keeping it there requires powerful feedback
- This central engine of galaxy formation is poorly understood



Central engine of galaxy formation

### **Probing Galaxy Formation**



Measure CGM and star formation rate out to high redshifts Constrain feedback efficiency to % level

• European CMB, Florence, 9/2017

#### Impact of Baryons on Dark Energy

- Stage IV cosmic shear surveys (e.g., Euclid, LSST, WFIRST) use measurements of the matter power spectrum, P(k), as precision probe of dark energy
- Baryonic physics (e.g., feedback) impact P(k) up to 10s of %!
- Order of mag. larger than LSST specs!



## Baryonic Effects on P(k)



• European CMB, Florence, 9/2017

### Conclusions

- "CMB" observations open a new window onto LSS and galaxy formation
- Probe baryons, matter & stellar formation

   Current generation (ACT, SPT, Planck) has
   discovered new territory
  - Vast science area under expansion/exploration
- Novel tools for
  - Astrophysics
  - Cosmology