Information from the ALICE IPN Orsay group

1. Nature of the thematics

- Main Scientific goals (of ALICE in a nutshell):
 - Study fundamental aspects of QCD
 - Test of perturbative QCD calculations (heavy flavours at IPNO)
 - Influence of multiple parton interactions
 - Correlation of soft to hard particle production:
 - possible collective effects (small impact parameter, large multiplicities),
 - saturation (at low x), string percolation, ...
 - Study the 'cold' nuclear effects in a not too dense environment (pPb like or photo-production)
 - Modification of PDFs in nuclei, or gluon saturation (low-x) in nuclei
 - Influence of the nuclei in particle production
 - Parton energy modification by collisional and/or radiative processes, multiple parton scattering, coherent energy loss
 - Emphasis on the nature of QCD matter at high temperature and energy density (QGP)
 - Test of lattice QCD calculations reflecting the fundamental symmetries of the theory
 - Nature and characteristics of the phase transition
 - Precise determination of QGP properties:
 - Critical temperature, degrees of freedom, transport coefficients and equation of state²

1. Nature of the thematics

- Main analysis activities of the IPNO group:
 - Observables:
 - heavy flavours (HF): D0→K π at central rapidity, c+b →µ at large rapidity
 - quarkonia (onia): $J/\psi \rightarrow \mu\mu$, $\psi' \rightarrow \mu\mu$ at large rapidity
 - $\bullet \quad W(\rightarrow \mu \nu) \text{ and } Z(\rightarrow \mu \mu) \text{ bosons at large rapidity}$
 - Focus on:
 - Test pQCD, multiple parton interactions, saturation and collective effects in pp collisions (differential yields, multiplicity dependence + prospects for double production)
 - Study of nPDFs
 - W and Z production in pPb and PbPb
 - HF in pPb
 - Onia in photo-production
 - Influence of 'cold' nuclei in particle production (pPb): HF and onia
 - Transport properties in QGP (PbPb): high pt HF
 - Temperature and density of the QGP (PbPb): low pt HF and onia
- Strong Overlap between Hadronic Physics and Particle Physics (50-50%)

1. Nature of the thematics

- "Publishing number":
 - Current ALICE author list from IPNO for physics publication:
 - 6 members (+1 in oct 2017) signing (no engineers, 2 PhD students included)
 - Technical internal Notes and publications related to detectors signed also by engineers:
 - Ex: Alice Technical Design Report (18 members signing)

2. Context

- International collaboration:
 - 42 countries, 174 institutes, 1800 members*
- National coordination "ALICE France" (7 groups)
- Interaction with labs in the valley:
 - CEA-Saclay (ALICE), LLR (CMS), LAL (LHCb)
 - Joint P2IO requests for postdoc with CEA-Saclay (ALICE)
 - Collaboration with CEA-Saclay in hardware and analysis activities (ALICE)
 - Joint workshops (IPNO/LAL/LLR) on prospects for fixed target physics
 - GDR-QCD
- Regular seminars inter-lab. theory+experiment:
 - IPNO, CEA-Saclay/IPHT, LLR, LAL, LPT, CPhT

2. Context

Specificity/Novelty/Impact/Limit

- Expertise of the group internationally recognized
 - Organisation of conferences and workshops
 - Write-up of review(s)
 - Invitations to conferences / workshops
 - Convener of working groups in GDR-QCD and European network
- Expertise of the group recognized in the collaboration
 - Analyses conducted for all systems (pp, pPb, PbPb) at various energies
 - Chairs and members of the corresponding Paper Writing Committees
 - Members of paper and analyses Internal Review Committees
 - Talks on behalf of ALICE in (main) international conferences
- Responsibilities in ALICE at various levels (technical and physics)
 - Deputy of the Muon Tracker Project (since 2013)
 - Co-responsible for Muon Data Quality Assurance (2011-2013)
 - Convener of the Heavy Flavour Physics Working Group (2015 Feb 2017)
 - Coordinator of the Physics Analysis Group D to hadron (2011 2014)
 - Coordinator of the Physics Analysis Group J/psi to dimuon (2011 2014)
 - Coordinator of the Event and Track selection Performance Group (2011 2013)
- Limited manpower, difficulties to get PhD/postdocs

3. Objectives

- Impact on the thematics on the short and mid-term
 - Data taking in ALICE approved for the next 10 years
 - Heavy ion Physics is part of the European Strategy for Particle Physics
 - Clear physics cases, as ex. for heavy-ion data:
 - (collect more data for precise measurements of rare probes)
 - Thermal photons and low-mass dileptons
 - \rightarrow temperature and equation of state of the medium
 - Thermalization of partons in the QGP (with low pt heavy quarks) → interaction of heavy quarks with the medium (dynamics), density of the medium
 - In-medium parton energy loss as testing ground for multi-particle aspects of QCD and probe of the QGP density (with high pt light and heavy quarks)
 - \rightarrow transport properties of the medium
 - (parton color and charge dependence)
 - Regeneration (vs. suppression) pattern of low-momentum quarkonia as probe of deconfinement
 - \rightarrow medium temperature and density

ALICE upgrade LOI

- 2019: Pb-Pb 2.85 nb⁻¹
- 2020: Pb-Pb 2.85 nb^{-1} at low magnetic field
- 2021: pp reference run
- 2022: LS3
- 2023: LS3
- 2024: Pb-Pb 2.85 nb⁻¹
- 2025: 50% Pb-Pb 1.42 $\rm nb^{-1}$ + 50% p-Pb 50 $\rm nb^{-1}$
- 2026: Pb-Pb 2.85 nb⁻¹

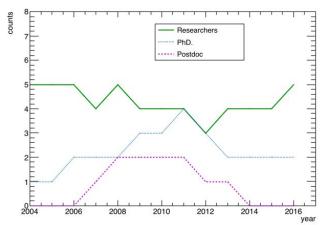
3. Objectives

- Long-term future (15 years)
 - Plans for ALICE after 2029 are not settled
 - Continue to run not excluded?
- New possible axis / evolution (> 10/15 years)
 - $\rightarrow\,$ No positioning of the group yet
 - \rightarrow Individuals start to express their interests
 - \rightarrow Several opportunities
 - Electron Ion Collider
 - FCC
 - Fixed Target Programme at the LHC
 - Others...

3. Objectives

- Profile of the ALICE group members and engineers involved in the project:
 - Scientific profile :
 - Data analyses (quarkonia, heavy-flavour, electroweak probes in pp, pA, AA)
 - Software development
 - Construction of the muon tracker chambers
 - Instrumentation for the upgrade of the muon tracker electronic readout
 - Technical profile :
 - Electronics engineers
 - Computer science engineers
- Technical needs for the future:
 - Upgrade of the muon tracker front end electronics during LS2
 - Experts in software development
 - 2 members of the group started discussions about implementation of a solid fixed target in ALICE (timescale >= LS2). If pursued:
 - Technical skills on integration, instrumentation to be foreseen

4. Organisation of the thematics


How to reach the objectives (among the 5 laboratories + external links to other laboratories)? Ex : Do we prefer a big lab or several labs? We Can give opinion on the structure in this section

- No strong opinion from the group members
- Feeling that the new structure has no influence on the fact of reaching the objectives
- Technical needs but fusion not necessarily needed for that (expertises already shared among the labs)

5. Formation and valorisation

- 1 Professor teaching in Licence/Master
 - "M1 physique fondamentale": nuclear and particle physics course
 - "M2 Rayonnement et énergie": detectors in high energy physics course
 - All teaching at Paris Sud University
- Contributions from group members to:
 - CERN ALICE Master class
 - Seminars for the general public / Seminars at high school
- Deputy director of ED MIPEGE (2010-2015)
- Formation:
 - 5 PhD thesis completed over the last 10 years (2 ongoing)
 - 12 L3/M1 and M2 students since 2006
- Future of the PhD students since 2007:
 - 3 in research, 1 got a permanent position, 1 left research
- Teaching at Ecole IN2P3
- Participation to "Fetes de la Science", Main à la pâte, "60 ans du CERN" (palais de la découverte), guided tour of the detector at CERN

- Current (wo)manpower:
 - 5 researchers (4 CNRS, 1 prof.)
 - 2 PhD students
 - 3.5 FTE engineers
- Evolution of the (wo)manpower since 2004 (detailed table in next slides)

- Number of people who participated in building the detector: 11.5 FTE engineers
 - \circ ~ 5,9 FTE au SEP, 3,1 au RDD et 2,5 au S2I (year 2005)

- Current (wo)manpower:
 - To avoid double counting all %FTE should be shared equally between hadronic physics and particle physics

Name	arrival	departure	%FTE ALICE	%FTE AFTER	%FTE PBC	Status
Espagnon Bruno*	01/09/2001		10	0	0	PR
Suire Christophe**	01/01/2004		100	0	0	CR
Hadjidakis Cynthia	01/10/2008		80	10	10	CR
Conesa del Valle Zaida	01/01/2013		100	0	0	CR
Massacrier Laure	01/10/2016		80	18	2	CR
Tarhini Mohamad	01/10/2014	01/10/2017	100	0	0	PhD
Crkovska Jana	01/10/2015	01/10/2018	100	0	0	PhD

* Lab deputy director ** Head of the group

7. "Additional informations from IPNO"

Guillaume Martinet (accelerator division) contacted us and couldn't be present at previous meeting. Informations from him:

- Wanted to contribute to the WG to make the link between high energy physics PHEN IPNO group and future accelerators projects
- Accelerator division of IPNO has contributed to the LHC upgrade (SPL)
- Currently involved in ESS
- Foresee to participate to FCC and/or ILC
- Link with "Accelerator and Associated technologies" Working Group

Back up

- Past years
 - To avoid double counting, all %FTE should be equally shared between particle and hadronic physics working groups

Name	arrival	departure	%FTE ALICE	Status
Le Bornec Yves	1996 ?	2011	100	DR
Bimbot Louis	?	2010	10-20%	DR
Willis Nicole	1996?	01/09/2008	50	PR
Comets Marie-Pierre	?	01/12/2006	50	CR
MacCormick Marion	1996?	01/11/2003	100	CR
Das Indranil	01/10/2011	01/10/2014	100	Postdoc
Tapia Takaki Daniel	2008	2013	100	Postdoc
Lopez Noriega Mercedes	12/2007	12/2010	100	Postdoc

• Past years

• To avoid double counting all %FTE should be shared equally between hadronic physics and particle physics

Name	arrival	departure	%FTE ALICE	Status
Lakomov Igor	01/10/2011	01/10/2014	100	PhD
Valenzia Palomo Lizardo	01/10/2010	01/10/2013	100	PhD
Bianchi Livio	01/10/2009	01/10/2012	100	PhD (shared with INFN Torino)
Boyer Bruno	01/10/2008	01/10/2011	100	PhD
Malek Magdalena	01/10/2006	01/09/2009	100	PhD
Charpy Alexandre	01/10/2004	01/10/2007	100	PhD