QCD and particle physics

Emi Kou (LAL-IN2P3)

"Matinée des Théoriciens de la vallée d'Orsay" at Orsay, 12 June 2017

To begin with...

- Figure 12 This presentation is to give rough idea of our field, QCD and particle physics
- Many thanks to people who gave me some slides
- And apologies that I can't cover fully the interesting topics people are working on...
 - LPT: D. Becirevic, B. Blossier, P. Boucaud, S. Descotes-Genon, M. Fontannaz, S. Wallon, A. Le Yaouanc
 - IPNO: V. Bernard, J.-P. Lansberg, B. Moussallam, H. Sazdjian
 - LAL: E.K.

There are many collaborations among 3 labs including cosupervision of PhD.

Particle physics

- We use quantum field theory
- We investigate fundamental particles and their interactions

The Standard Model

 $SU(3)c \times SU(2)_L \times U(1)_Y$ gauge theory

interaction

Weak Electromagnetic

Electro-weak theory

coupling

gs

 (g, g', θ_w)

1968 SLAC: deep inelastic scattering

1973 Gross/Wilczek/Politzer: asymptotic freedom

> 1974 Wilson: Lattice gauge theory

1931 Pauli: neutrino prediction 1933 Fermi: theory of β decay 1956 Lee/Yang: parity violation prediction

1928 Dirac: positron prediction

1932 Anderson: positron discovery

1956 Reines/Cowan: neutrino discovery 1957 Wu: parity violation discovery

1989-2000 LEP experiment: precision measurement of (g, g', θ_w)

1964 Higgs: symmetry breaking 1967 Weinberg/Salam: electroweak unification

1973 Gargamelle: Z boson discovery

2012 LHC: Higgs boson discovery

The Standard Model

3 generation of quarks and leptons

interaction

Weak Electromagnetic

coupling

 g_s

 (g, g', θ_w) , $V_{CKM(quarks only)}$, 12 masses

1964 Cronin/Fitch: CP violation in K meson

1973 Kobayashi/Maskawa: theory of CP violation

Flavour physics!

2000-2010 B factories experiment 1997-2001 NA48 (kaon) experiment 2010-present LHCb experiment 2015-present NA62 (kaon) experiment 2018-2025 Belle II experiment

1974 Ting/Richter: charm quark discovery

Searching physics beyond the SM

 New physics searches: the most important task for low energy, high energy particle physics experiments

$$\Delta_{NP}$$
 = Deviation from SM
= (exp. - SM) $\pm \sqrt{(\sigma_{exp})^2 + (\sigma_{SM})^2}$

we see several hints but not significant enough so far...

- L.H.S. = Propose models beyond the SM and how to observe them (talk by Y. Mambrini)
- R.H.S. = Provide a more precise SM theoretical prediction by improving our QCD computation techniques (this talk)

Searching physics beyond the SM

 New physics searches: the most important task for low energy, high energy particle physics experiments

$$\Delta_{NP}$$
 = Deviation from SM
= (exp. - SM) $\pm \sqrt{(\sigma_{exp})^2 + (\sigma_{SM})^2}$

Searching physics beyond the SM

 New physics searches: the most important task for low energy, high energy particle physics experiments

$$\Delta_{NP}$$
 = Deviation from SM
= (exp. - SM) $\pm \sqrt{(\sigma_{exp})^2 + (\sigma_{SM})^2}$

 \rightarrow Example: hadronic contributions to muon g-2 (5- σ discrepancy)

$$a_{\mu}^{exp} = 116592089(63) \cdot 10^{-11}$$
 $a_{\mu}^{th} = 116591778(45) \cdot 10^{-11}$

→ Most difficult piece: light-by-light hadronic amplitude (combine theory and experimental measurements)

Quantum Chromo Dynamics (QCD)

QCD Lagrangian

$$J = \frac{1}{4g^2} G_{\mu\nu} G_{\mu\nu} + \sum_{j} \overline{g}_{j} (i \partial^{\mu} D_{\mu} + m_{j}) g_{j}$$
where $G_{\mu\nu} = \partial_{\mu} A_{\nu}^{q} - \partial_{\nu} A_{\mu}^{q} + i f_{ba}^{q} A_{\mu}^{b} A_{\nu}^{c}$
and $D_{\mu} = \partial_{\mu} + i t^{q} A_{\mu}^{q}$

$$That's it!$$

FIGURE 1. THE QCD LAGRANGIAN \mathcal{L} displayed here is, in principle, a complete description of the strong interaction. But, in practice, it leads to equations that are notoriously hard to solve. Here m_j and q_j are the mass and quantum field of the quark of jth flavor, and A is the gluon field, with spacetime indices μ and ν and color indices a, b, c. The numerical coefficients f and t guarantee SU(3) color symmetry. Aside from the quark masses, the one coupling constant g is the only free parameter of the theory.

Quantum Chromo Dynamics (QCD)

Quarks are glued into hadrons

gluons don't allow us to see only quark interactions...

What shall we do?!

Quantum Chromo Dynamics (QCD)

Quarks are glued into hadrons

Asymptotic freedom!

coupling $\alpha_s(Q)\ll 1$ (Q= typical energy) for $Q\gg \Lambda_{QCD}\simeq 200\,MeV$ i.e. distance $\sim 1/Q\ll 1$ fm

gluons couple weakly: perturbative expansion in α_s is possible!

gluons couple strongly:
non-perturbation
computation necessary

Confinement is non-perturbative QCD

Perturbative QCD

Michel Fontannaz, Jean-Philippe Lansberg, Samuel Wallon

Description of a wide class of processes relying on perturbative methods

 "factorization" of the short distance dynamics from the large distance dynamics of quantum chromodynamics (QCD)

M =short distance amplitude \otimes non-perturbative content of the hadron convolution

Generalized Parton Distribution (GPD)

virtual photon
$$\gamma^*$$
 = probe $1/Q$ = spatial resolution (Heisenberg inequality)
$$M_{\gamma^*p \to \gamma p'} \qquad \qquad \begin{array}{c} \text{perturbative corrections} \\ \text{resummation} ? \end{array}$$

$$= \quad (\# + \# \alpha_s + \cdots) \\ + \quad \frac{1}{Q} (\# + \# \alpha_s + \cdots)$$

Lattice QCD (non-perturbative QCD)

D. Becirevic, V. Bernard, B. Blossier, P. Boucaud, A. Le Yaouanc

Discretization of space-time!

Statistical sample of spin configurations following Boltzmann distribution.

Spin placed on a grid: lattice QCD Compute average of correlation functions

Radial excitation!

observation of node of wave function!

Fundamental coupling of QCD

change of sign of 3gluon vertex observed!

Study of unstable particle

Chiral perturbation theory

B. Moussallam, V. Bernard, H. Sazdjian, S. Descotes-Genon

- EFT of QCD (low energy)
 - → Physics of QCD affected by pattern of quark masses:

Imaginary world: $1 GeV < m_u$, m_d , m_s , m_c , m_b , m_t

lightest hadron is glueball

Our world: m_u , m_d , $m_s < 1 GeV < m_c$, m_b , m_t

lightest hadron is pion

→ ChPT: Light quark mass expansion.

Lagrangian formalism (classification of independent terms, classification of counterterms) to 2-loops

but: slow convergence

Dispersive representation

ππ, πK scattering, charmed mesons

Combine ChPT+Analyticity+Unitarity \Rightarrow improved convergence

Example: $\eta \to 3\pi$, good 2.5 conv. in unphysical region, 2 use analyticity extrapolation 2 to physical region

Applying QCD methods to Phenomenology

D. Becirevic, B. Blossier, P. Boucaud, S. Descotes-Genon, M. Fontannaz, S. Wallon, A. Le Yaouanc, V. Bernard, J.-P. Lansberg, B. Moussallam, H. Sazdjian, E. Kou

Statistical method to incorporate theory uncertainties, very tricky!

To estimate theoretical uncertainties accurately, tests of validity of the QCD methods are very important!

Perturbation QCD: how well it is converging?

Lattice QCD: is the spacing small enough?

ChPT: pion mass small enough?

How about kaon, eta eta'?

etc............

Collaborations with experimentalists are crucial!

Conclusions

- IPN-LAL-LPT have many common projects and collaborations.
- Fig. 1981 IPN-LAL-LPT have expertise of basic techniques in QCD.
- QCD is unavoidable for particle physics programs. Collaborations with experimentalists crucial.

*I gave only a few examples of the on-going works but these are only a tiny portion!