Is String Phenomenology an Oxymoron?

Fernando Quevedo ICTP/Cambridge Northeastern November 2017

FQ, arXiv:1612.01569 (CUP to appear)

Greatest `Recent' Discoveries

- Fluctuations of Cosmic Microwave Background (1992) (Nobel Prize 2006)
- Dark Energy (1998) (Nobel Prize 2011)

- Higgs Discovery (2012) (Nobel Prize 2013)
- Gravitational waves (2016) (Nobel Prize 2017)

Fundamental Theories:

Special Relativity and Quantum Mechanics

Poincaré Group: (SR and QM)

Massive particles: (Little group SO(3)) p = (m, 0, 0, 0)

$$[m, J; p_{\mu}, s)$$
 with $s = -J, -J + 1, \cdots, J$ and $p^2 = m^2$

Tachyons?

Massless particles: (Little group E2)

∞-dimensional representations (CSR): not observed ??

Restricted Little group: O(2) in E2: $|p_{\mu}, \lambda\rangle$ with $\lambda = 0, \pm 1/2, \pm 1, \cdots$.

p = (E, 0, 0, E)

Theories for spins 0,1/2,1: Quantum Field Theories (QFT)

Massless spins 3/2,2: (super) gravity: Effective Field Theories (EFT)

"Generic Predictions" of QFT

- Identical particles
- Antiparticles
- **CPT**
- Spin-statistics
- **'Decoupling'** (physics organised by scales, EFTs)

The Standard Model (A particular QFT)

DI	11/	G
HI		

Leptor	15 spin	= 1/2	Quar	ks spi
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx Mass GeV/c
ν_e electron neutrino	<1×10 ⁻⁸	0	U up	0.003
e electron	0.000511	-1	d down	0.006
$ u_{\mu}^{\text{muon}}_{\text{neutrino}}$	<0.0002	0	C charm	1.3
μ muon	0.106	-1	S strange	0.1
$ u_{\tau}^{tau}_{neutrino}$	<0.02	0	t top	175
$oldsymbol{ au}$ tau	1.7771	-1	b bottom	4.3

SU(3)xSU(2)xU(1) + Gravity 3 Families + Higgs 3+1 Dimensions

BOSONS

matter constituents spin = 1/2, 3/2, 5/2, ...

n = 1/2

Electric charge

2/3

-1/3

2/3

-1/3

2/3

-1/3

force carriers spin = 0, 1, 2, ...

Unified Electroweak spin = 1				
Name	Mass GeV/c ²	Electric charge		
γ photon	0	0		
W-	80.4	-1		
W+	80.4	+1		
Z ⁰	91.187	0		

Strong (color) spin = 1			
Name	Mass GeV/c ²	Electric charge	
g gluon	0	0	

- Higgs H spin=0
- Graviton G spin=2 (Classical!?)

Standard Model + Gravity

Some Properties of the SM

- Arguably greatest theoretical achievement in past 75 years.
- It is renormalisable but also an EFT (large cutoff)
- It is simple (not the simplest)
- Matter in bi-fundamental representations
- Illustrates several phases of gauge theories
- It is 'ugly' (elegant principles but many free parameters)
- SM+gravity + neutrino mass could imply a SM `landscape'
- Not complete (baryogenesis, dark matter, gravity)

Open Problems (Challenges for young generation)

Open Questions

- Why? (3+1 (dimensions, families, interactions);
 + some 20 parameters (masses, couplings))
- Naturalness (hierarchy, cc, strong CP)
- 'Technical' (confinement,...)
- Cosmology (dark matter, baryogenesis, density perturbations of CMB, origin/alternatives to inflation,..., big-bang)
- Consistency (gravity)

Approaches to BSM

Approaches to BSM

Simplicity

Follow your nose

Top-down

Bottom-up

FUNDAMENTAL PROBLEM Quantum Gravity

$$L_{\text{Planck}} = \sqrt{\frac{\hbar G_N}{c^3}} =$$
$$M_{\text{Planck}} = \sqrt{\frac{\hbar c}{G_N}} =$$
$$T_{\text{Planck}} = \sqrt{\frac{\hbar G_N}{c^5}} =$$

 1.616×10^{-33} cm

21.8 µg

$$h/2\pi = \hbar = 1.0546 \times 10^{-34} \text{ kg m}^2 \text{ sec}$$

 $G_N = 6.672 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ sec}^{-2}$

$c = 2.99792458 \times 10^8$ m/sec

10º m

10⁻³ m

10⁻⁶ m

10⁻⁹ m

10⁻¹² m

10⁻¹⁵ m

10⁻¹⁸ m

person

atom

LHC

Planck scale

1 metre

logarithmic scale

1 millimetre

1 micrometre

1 nanometre

1 picometre

1 femtometre

1 attometre

Hierarchy Problem

HS 1997

Quantum corrections?

Cosmological constant

String Theory

General 'Predictions' of (Super) String Theory

Theory	Dimensions	Supercharges	Bosc	onic Spectrum
Heterotic	10	16	g_{I}	$_{MN},B_{MN},\phi$
$E_8 \times E_8$				A_M^{ij}
Heterotic	10	16	g_{I}	$_{MN},B_{MN},\phi$
SO(32)				A_M^{ij}
Type I	10	16	NS-NS	g_{MN},ϕ,A_M^{ij}
SO(32)			R-R	C_{MN}
Type IIA	10	32	NS-NS	g_{MN},B_{MN},ϕ
			R-R	C_M, C_{MNP}
Type IIB	10	32	NS-NS	g_{MN},B_{MN},ϕ
			R-R	C, C_{MN}, C_{MNPQ}
11D Supergravity	11	32	g	g_{MN}, C_{MNP}

No tachyons

No CSR (continuous spin representations)

* Both in principle allowed by Special relativity+quantum mechanics
 + QFT (?) but not on perturbative (super) strings.

Extra Bosonic Dimensions

The Brane World

Brane world in string theory

String scale Ms= $M_P/V^{\frac{1}{2}}$ (very large volume implies strings relevant at scales much smaller than Planck!!!!)

Boson — Fermion — Boson

SUPERSYMMETRY!

If SUSY particles mass 1TeV can solve hierarchy problem!!!

Supersymmetry and Hierarchy

Supersymmetric particles contribute to the mass of the Higgs with opposite signs as SM particles and solves the hierarchy if their own mass is $\sim 10^3$ GeV

SUSY + Unification

Supersymmetry

- Hierarchy ✓
- Unification \checkmark
- Dark Matter 🗸
- Instability ✓
- Cosmological Constant X
- Experimental Evidence?? (fine tuning again?) X
- (Super) Strings ? (SUSY needed but scale?)

- SUSY does not solve the cc problem
- SUSY may not solve the hierarchy problem
- SUSY B,L + flavour problem
- SUSY complicates cosmology (cosmological moduli problem, gravitino problem)
- Best dark matter candidates not neutralino
- Unification: other options
- Stability of Higgs potential? No tachyons?
 String Theory?

One Theory Many Solutions

One single theory (+ no free parameters) but MANY solutions

Compactification

The String Landscape

Multiverse

MANY solutions (>10¹⁰⁰⁰⁰⁰!): Anthropic 'explanation' of dark energy!!?????

• Good: A `solution' of dark energy and allows for the first time to trust calculations for low-energy SUSY breaking.

 Bad: missed opportunity to have new physics at low energies from small Λ.

• Ugly: It may also be used to `solve' other problems (Split SUSY, High-energy SUSY) in unnatural ways.

Very few predictions (~QFT)

To make progress:

- Construct concrete 'realistic' models?
- Extract properties of classes of models (`big data'?)

• General 'scenarios' (global vs local issues)

General questions (SUSY breaking and moduli stabilisation)

'Predictions' of Classes of String Models

Mirror Symmetry

Generic 4D String Predictions

- Moduli (~thousands)
- Axions (many)
- No global symmetries

- Small irreps (fundamental, bifundamental, symmetric, antisymmetric, adjoint)
- If 4D N=1 SUSY: Cosmological Moduli 'Problem'! (unless M_{moduli}>30 TeV)

Thermal History

Alternative History

From S. Watson, SUSY 2013

Challenges for String Models

- Gauge and matter structure of SM
- Hierarchy of scales + masses (including neutrinos)
- Flavor CKM, PMNS mixing, CP no FCNC
- Hierarchy of gauge couplings (unification?)
- 'Stable' proton + baryogenesis
- Inflation or alternative for CMB fluctuations
- Dark matter (+ avoid overclosing)
- Dark radiation (N_{eff}~3.04)
- Dark energy

N.B. If ONE of them does not work, rule out the model!!!

e.g. Standard Model on D3/D7 Branes

e.g.: Models close to SM: 3 families, hierarchy of quark masses, etc.

String Scenario	n_s	r
$\mathrm{D}3/\overline{\mathrm{D}3}$ Inflation	$0.966 \le n_s \le 0.972$	$r \le 10^{-5}$
Inflection Point Inflation	$0.92 \le n_s \le 0.93$	$r \le 10^{-6}$
DBI Inflation	$0.93 \le n_s \le 0.93$	$r \le 10^{-7}$
Wilson Line Inflation	$0.96 \le n_s \le 0.97$	$r \le 10^{-10}$
${ m D3/D7}$ Inflation	$0.95 \le n_s \le 0.97$	$10^{-12} \le r \le 10^{-5}$
Racetrack Inflation	$0.95 \le n_s \le 0.96$	$r \le 10^{-8}$
N-flation	$0.93 \le n_s \le 0.95$	$r \le 10^{-3}$
Axion Monodromy	$0.97 \le n_s \le 0.98$	$0.04 \le r \le 0.07$
Kahler Moduli Inflation	$0.96 \le n_s \le 0.967$	$r \le 10^{-10}$
Fibre Inflation	$0.965 \le n_s \le 0.97$	$0.0057 \le r \le 0.007$
$\operatorname{Poly}-\operatorname{instanton}\operatorname{Inflation}$	$0.95 \le n_s \le 0.97$	$r \le 10^{-5}$

e.g. String Inflation models

In excellent shape after Planck 2013-2015, (but most would have been RULED OUT if bicep2 were OK !)

e.g. SUSY Breaking

• Split Supersymmetry $m_0^{50} M_{1/2}$ $m_0^{1000} M_{1/2}$

M_{1/2}~ 1 TeV

(Concrete realisation of split susy in a framework including landscape, relative scales fixed, matching well with experiments...)

• High energy SUSY $m_0^{\sim} M_{1/2}^{\sim} 10^{11} \text{ GeV}$

- Field is broad: Mathematics, cosmology, phenomenology, computer,...
- After the Higgs it is one of the main guides to BSM physics because UV completion.
- **`String inspired' phenomenology** (large extra dimensions, Randall-Sundrum, axiverse, split supersymmetry, anomalous U(1)'s...)
- Continuous 'cumulative' progress
- The 'Swampland'? (WGC, non SUSY AdS,...?)
- **Correlations?** (inflation vs SUSY, etc.)

- Realistic Model Building: Many quasi-realistic models (local and global) but not fully realistic yet.
- SUSY Breaking and Moduli Stabilisation: A handful of 'scenarios' (generically scalars much heavier than gauginos)
- Inflation and postinflation cosmology: (Few scenarios with concrete predictions).

- Experimentally driven? (LHC, axion search, post-Planck/ experiments) (SUSY? Z'? non-gaussianities?, DR settled? tensor modes!?)
- Accelerators: ILC, 100Km/100TeV hadron collider!?

• Evidence for String (GUT) scale physics?? (proton decay, cosmic strings, tensor modes, bubble collisions?,...)

String Models

• Too many string models? (Heterotic, IIA, I, IIB, Landscape,...)

 Or too 'few' models?
 (Not fully Realistic model yet!!!)

Machine learning?

- Typical statement: "We do not understand well enough string theory to try to extract its physics implications"
- Bold answer: "We may understand the theory better than we think (at low energies and weak couplings) using all foreseeable ingredients: geometry, branes, fluxes, perturbative, nonperturbative effects, etc."

"...our mistake is not that we take our theories too seriously, but that we do not take them seriously enough. It is always hard to realise that these numbers and equations we play with at our desks have something to do with the real world."

Steven Weinberg

Size and Shape of Extra Dimensions

4-cycle size: *т* (Kahler moduli)

3-cycle size: U (Complex structure moduli)

+ String Dilaton: S

Gravity/No-Gravity correspondence!

Some Implications of Holography

- Proper definition of quantum gravity theory!
- Black hole entropy/area! S_{BH} = (kc³/4Għ) A
- Information loss paradox 'solved'!?
- Potential applications to 'strong coupling systems' (quark-gluon plasma, condensed matter physics, turbulence,...)
- Technique compute non gaussianities of CMB!
- Cosmological singularity/ acceleration????

	KKLT	LVS
Soft term	D3	D3
M _{1/2}	$\pm \left(\frac{3}{2a\mathcal{V}^{2/3}}\right) m_{3/2}$	$\pm \left(\frac{3s^{3/2}\xi}{4\mathcal{V}}\right) m_{3/2}$
m_0^2	$\left(\frac{s^{3/2}\xi}{4\mathcal{V}}\right)m_{3/2}^2$	$\left(\frac{5s^{3/2}\xi}{8\mathcal{V}}\right) m_{3/2}^2$
A_{ijk}	$-(1-s\partial_s\log Y_{ijk})M_{1/2}$	$-(1-s\partial_s\log Y_{ijk})M_{1/2}$
	KKLT	LVS
Soft term	D7	D7
Soft term $M_{1/2}$	$\frac{\mathrm{D7}}{\pm \left(\frac{1}{a\mathcal{V}^{2/3}}\right)m_{3/2}}$	$\frac{\text{D7}}{\pm \left(\frac{3}{4a\tau_s}\right)m_{3/2}}$
Soft term $M_{1/2}$ m_0^2	$\frac{D7}{\pm \left(\frac{1}{a \mathcal{V}^{2/3}}\right) m_{3/2}}$ $(1 - 3\omega) m_{3/2}^2$	$ \begin{array}{c c} & D7 \\ & \pm \left(\frac{3}{4a\tau_s}\right) m_{3/2} \\ \hline & \left(\frac{9(1-\lambda)}{16a^2\tau_s^2}\right) m_{3/2}^2 \end{array} $

e.g. BRANE - ANTIBRANE INFLATION

All branes inflate while two approach

e.g. MODULI INFLATION

Cosmological Moduli Domination

String Phenomenology*:

Long Term Plan: String theory scenario that satisfies all particle physics and cosmological observations and hopefully lead to measurable predictions

*In contrast to "String Noumenology"