AdS classifications

Alessandro Tomasiello

Bariloche, 19/1/2018

Introduction

I will consider AdS_d for d = 4, 5, 7

Why d > 4?

Introduction

I will consider AdS_d for d = 4, 5, 7

Why d > 4?

• Easier problem; lessons for flux compactifications

backreacted (unsmeared) orientifolds

• inspire several new AdS4 solutions

Introduction

I will consider AdS_d for d = 4, 5, 7

Why d > 4?

• Easier problem; lessons for flux compactifications

backreacted (unsmeared) orientifolds

• inspire several new AdS4 solutions

• AdS/CFT [not today]

susy parameters $\epsilon_{1,2}$

 \leq G-structure on $T \oplus T^*$

susy parameters $\epsilon_{1,2}$

 \hookrightarrow *G*-structure on $T \oplus T^*$

In general in type II, without factorization: [AT'II]

susy parameters $\epsilon_{1,2}$

 \hookrightarrow G-structure on $T \oplus T^*$

In general in type II, without factorization: [AT'II]

 $(\operatorname{Spin}(7) \ltimes \mathbb{R}^8)^2$ structure^{*}

susy parameters $\epsilon_{1,2}$

G-structure on $T \oplus T^*$

In general in type II, without factorization: [AT'II]

 \leq

 $(\operatorname{Spin}(7) \ltimes \mathbb{R}^8)^2$ structure^{*}

$$(d + \mathbf{H} \wedge)\Phi = (\iota_K + \tilde{K} \wedge)\mathbf{F}$$

+ extra equations, almost never important

susy parameters $\epsilon_{1,2}$

G-structure on $T \oplus T^*$

In general in type II, without factorization: [AT'II]

 \leq

 $(\operatorname{Spin}(7) \ltimes \mathbb{R}^8)^2 \text{ structure}^*$ $\operatorname{NS}_{3}\operatorname{-form} \qquad \operatorname{defined} \operatorname{by} \Phi$ $(d + H \wedge) \Phi = (\iota_K + \tilde{K} \wedge) F$ $\operatorname{RR} \operatorname{flux}$

+ extra equations, almost never important

susy parameters $\epsilon_{1,2}$

G-structure on $T \oplus T^*$

In general in type II, without factorization: [AT'II]

 \leq

I.AdS7

$$ds^{2} = 8\sqrt{-\frac{\ddot{\alpha}}{\alpha}}ds^{2}_{\text{AdS}_{7}} + \sqrt{-\frac{\alpha}{\ddot{\alpha}}}dz^{2}$$
$$+\frac{\alpha^{3/2}(-\ddot{\alpha})^{1/2}}{\sqrt{2\alpha\ddot{\alpha}-\dot{\alpha}^{2}}}ds^{2}_{S^{2}}$$

$$e^{\phi} \propto rac{(-lpha/\ddot{lpha})^{3/4}}{\sqrt{\dot{lpha}^2 - 2lpha \ddot{lpha}}}$$

$$B = \pi \left(-z + \frac{\alpha \dot{\alpha}}{\dot{\alpha}^2 - 2\alpha \ddot{\alpha}} \right) \operatorname{vol}_{S^2}$$

$$F_2 = \left(\frac{\ddot{\alpha}}{162\pi^2} + \frac{\pi F_0 \alpha \dot{\alpha}}{\dot{\alpha}^2 - 2\alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^2}$$

I.AdS7

$$\begin{split} ds^2 &= 8\sqrt{-\frac{\ddot{\alpha}}{\alpha}ds^2_{\mathrm{AdS}_7}} + \sqrt{-\frac{\alpha}{\ddot{\alpha}}}dz^2 \\ &+ \frac{\alpha^{3/2}(-\ddot{\alpha})^{1/2}}{\sqrt{2\alpha\ddot{\alpha} - \dot{\alpha}^2}}ds^2_{S^2} \end{split}$$

$$\ddot{\alpha}$$
 is piecewise linear [slope = F_0]

$$e^{\phi} \propto rac{(-lpha/\ddot{lpha})^{3/4}}{\sqrt{\dot{lpha}^2 - 2lpha \ddot{lpha}}}$$

$$B = \pi \left(-z + \frac{\alpha \dot{\alpha}}{\dot{\alpha}^2 - 2\alpha \ddot{\alpha}} \right) \operatorname{vol}_{S^2}$$

$$F_2 = \left(\frac{\ddot{\alpha}}{162\pi^2} + \frac{\pi F_0 \alpha \dot{\alpha}}{\dot{\alpha}^2 - 2\alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^2}$$

I.AdS7

$$ds^{2} = 8\sqrt{-\frac{\ddot{\alpha}}{\alpha}}ds^{2}_{\mathrm{AdS}_{7}} + \sqrt{-\frac{\alpha}{\ddot{\alpha}}}dz^{2} + \frac{\alpha^{3/2}(-\ddot{\alpha})^{1/2}}{\sqrt{2\alpha\ddot{\alpha}-\dot{\alpha}^{2}}}ds^{2}_{S^{2}}$$

$$\ddot{\alpha}$$
 is piecewise linear [slope = F_0]

$$e^{\phi} \propto rac{(-lpha/\ddot{lpha})^{3/4}}{\sqrt{\dot{lpha}^2 - 2lpha \ddot{lpha}}}$$

$$B = \pi \left(-z + \frac{\alpha \dot{\alpha}}{\dot{\alpha}^2 - 2\alpha \ddot{\alpha}} \right) \operatorname{vol}_{S^2}$$

$$F_2 = \left(\frac{\ddot{\alpha}}{162\pi^2} + \frac{\pi F_0 \alpha \dot{\alpha}}{\dot{\alpha}^2 - 2\alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^2}$$

I.AdS7

$$ds^{2} = 8\sqrt{-\frac{\ddot{\alpha}}{\alpha}}ds^{2}_{\text{AdS}_{7}} + \sqrt{-\frac{\alpha}{\ddot{\alpha}}}dz^{2} + \frac{\alpha^{3/2}(-\ddot{\alpha})^{1/2}}{\sqrt{2\alpha\ddot{\alpha} - \dot{\alpha}^{2}}}ds^{2}_{S^{2}}$$

$$\ddot{\alpha}$$
 is piecewise linear [slope = F_0]

$$e^{\phi} \propto rac{(-lpha/\ddot{lpha})^{3/4}}{\sqrt{\dot{lpha}^2 - 2lpha \ddot{lpha}}}$$

$$B = \pi \left(-z + \frac{\alpha \dot{\alpha}}{\dot{\alpha}^2 - 2\alpha \ddot{\alpha}} \right) \operatorname{vol}_{S^2}$$

$$F_2 = \left(\frac{\ddot{\alpha}}{162\pi^2} + \frac{\pi F_0 \alpha \dot{\alpha}}{\dot{\alpha}^2 - 2\alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^2}$$

One can read off the gauge groups for the dual CFT directly:

One can read off the gauge groups for the dual CFT directly:

One can also have D6s:

One can also have D6s:

Boundary conditions for α are also important

Boundary conditions for α are also important

To any of our solutions

 $e^{2A}ds^2_{\rm AdS_7} + dr^2 + v^2 ds^2_{S^2}$

To any of our solutions

 $e^{2A}ds^2_{AdS_7} + dr^2 + v^2ds^2_{S^2}$ $[Apruzzi, Fazzi Passias, AT'_{15}]$ $\frac{3}{4}e^{2A}(ds^2_{AdS_5 \times \Sigma_2}) + dr^2 + \frac{v^2}{1-4v^2}e^{2A}ds^2_{S^2}$ dual to $CFT_4 \cong CFT_6/\Sigma_2$

[twisted compactification]

To any of our solutions

dual to $CFT_3 \cong CFT_6/\Sigma_3$ [twisted compactification]

To any of our solutions

 $e^{2A}ds^{2}_{AdS_{7}} + dr^{2} + v^{2}ds^{2}_{S^{2}}$ [Apruzzi, Fazzi Passias, AT '15] [Rota, AT '15] $\frac{3}{4}e^{2A}(ds^{2}_{AdS_{5}\times\Sigma_{2}}) + dr^{2} + \frac{v^{2}}{1-4v^{2}}e^{2A}ds^{2}_{S^{2}}$ dual to CFT₄ \cong CFT₆/ Σ_{2} [twisted compactification] $\frac{1}{8}e^{2A}(ds^{2}_{AdS_{4}\times\Sigma_{3}}) + dr^{2} + \frac{v^{2}}{1-6v^{2}}e^{2A}ds^{2}_{S^{2}}$ [twisted compactification]

dual to $CFT_3 \cong CFT_6/\Sigma_3$ [twisted compactification]

in particular we can have AdS4 solutions with localized O6s and O8s

Even more generally:

To any of our solutions

$$e^{2A}ds_{AdS_{7}}^{2} + dr^{2} + v^{2}ds_{S^{2}}^{2}$$

$$e^{2A}ds_{7}^{2} + dr^{2} + \frac{v^{2}}{1+16(X^{5}-1)v^{2}}e^{2A}ds_{S^{2}}^{2}$$

an Ansatz for a consistent truncation!

'minimal gauged 7d sugra'

fields: $g^{(7)}_{\mu\nu}, A^i_{\mu}, X$

[Passias, Rota, AT '15]

• Old partial classifications in M-theory and IIB exist [Gauntlett,]

[Gauntlett, Martelli, Sparks, Waldram '04, '05]

II. AdS5

• Old partial classifications in M-theory and IIB exist [Gauntlett, Martelli, Sparks, Waldram '04, '05]

• IIA: schematically
$$ds^2 = e^{2A} ds^2_{AdS_5} + e^{2f} ds^2_{\Sigma_g} + (d\psi + A)^2 + g$$

[Bah, Passias, AT '15]
 M_3 fiber $-\partial_s D_s ds^2 - 2\partial_u D_s duds - \partial_u D_u du^2$
internal $M_5 =$

CK

II. AdS5

• Old partial classifications in M-theory and IIB exist [Gauntlett, Martelli, Sparks, Waldram '04, '05]

• IIA: schematically
$$ds^2 = e^{2A} ds^2_{AdS_5} + e^{2f} ds^2_{\Sigma_g} + (d\psi + A)^2 + g$$

[Bah, Passias, AT '15]
 M_3 fiber $-\partial_s D_s ds^2 - 2\partial_u D_s duds - \partial_u D_u du^2$
internal $M_5 =$

• potentials D_s , D_u satisfy 2 PDEs

a mix of Toda and Monge-Ampère...

$$\Delta_2 D_s = \partial_s (s \det(g) e^{D_s}) + \frac{F_0}{s} \partial_s e^{D_s}$$

$$\Sigma_g \text{ Laplacian}$$

II. AdS5

• Old partial classifications in M-theory and IIB exist [Gauntlett, Martelli, Sparks, Waldram '04, '05]

• IIA: schematically
$$ds^2 = e^{2A} ds^2_{AdS_5} + e^{2f} ds^2_{\Sigma_g} + (d\psi + A)^2 + g$$

[Bah, Passias, AT'15]
 M_3 fiber $-\partial_s D_s ds^2 - 2\partial_u D_s duds - \partial_u D_u du^2$
internal $M_5 =$

• potentials D_s , D_u satisfy 2 PDEs

a mix of Toda and Monge-Ampère...

$$\Delta_2 D_s = \partial_s (s \det(g) e^{D_s}) + \frac{F_0}{s} \partial_s e^{D_s}$$

$$\Sigma_g \text{ Laplacian}$$

• 'Compactification' Ansatz:

 $D_s, D_u \text{ don't dep. on } \Sigma_g$ & f = A

AdS₇ comp. on Σ_g [Apruzzi, Fazzi, Passias, AT'15] More general
 'Separation' Ansatz:

D_s, D_u don't dep. on Σ_g & some guesswork...

[Bah, Passias, AT 1704.07389]

• More general D_s 'Separation' Ansatz:

 D_s, D_u don't dep. on Σ_g & some guesswork...

[Bah, Passias, AT 1704.07389]

$$ds_5^2 = ds^2(\Sigma_g) + \frac{3zdz^2}{p} + \frac{9z^3}{3p - zp'} \left[\frac{kdk^2}{1 - k^3} + \frac{4}{3} \frac{(1 - k^3)p}{3p - zp'(1 - k^3)} \eta_{\psi}^2 \right]$$
$$p = (z - z_0) \left[\kappa (z^2 + z_0 z + z_0^2) - 3\ell z_1^2 \right] \qquad M_3$$

• More general D_s, D • Separation' Ansatz: & sor

 D_s, D_u don't dep. on Σ_g & some guesswork...

[Bah, Passias, AT 1704.07389]

$$ds_5^2 = ds^2(\Sigma_g) + \frac{3zdz^2}{p} + \frac{9z^3}{3p - zp'} \left[\frac{kdk^2}{1 - k^3} + \frac{4}{3} \frac{(1 - k^3)p}{3p - zp'(1 - k^3)} \eta_{\psi}^2 \right]$$
$$p = (z - z_0) \left[\kappa (z^2 + z_0 z + z_0^2) - 3\ell z_1^2 \right] \qquad M_3$$

• any genus allowed

• More general D_s, D_s • Separation' Ansatz: & son

 D_s, D_u don't dep. on Σ_g & some guesswork...

[Bah, Passias, AT 1704.07389]

$$ds_5^2 = ds^2(\Sigma_g) + \frac{3zdz^2}{p} + \frac{9z^3}{3p - zp'} \left[\frac{kdk^2}{1 - k^3} + \frac{4}{3} \frac{(1 - k^3)p}{3p - zp'(1 - k^3)} \eta_{\psi}^2 \right]$$
$$p = (z - z_0) \left[\kappa (z^2 + z_0 z + z_0^2) - 3\ell z_1^2 \right] \qquad M_3$$

• any genus allowed

• punctures (D₄s) smeared over Σ_g

• More general D_s, D_u don't dep. on Σ_g • Separation' Ansatz: & some guesswork...

[Bah, Passias, AT 1704.07389]

 $ds_5^2 = ds^2(\Sigma_g) + \frac{3zdz^2}{p} + \frac{9z^3}{3p - zp'} \left[\frac{kdk^2}{1 - k^3} + \frac{4}{3} \frac{(1 - k^3)p}{3p - zp'(1 - k^3)} \eta_{\psi}^2 \right]$ $p = (z - z_0) \left[\kappa (z^2 + z_0 z + z_0^2) - 3\ell z_1^2 \right] \qquad M_3$

any genus allowed

• punctures (D₄s) smeared over Σ_g

• when D4s absent, it becomes AdS5 comp. of

III. AdS₄

 $\mathcal{N} = 1$ susy:

 $\mathrm{SU}(3)\times\mathrm{SU}(3)$ structure satisfying

[Graña, Minasian, Petrini, AT '05]

 $d_{H}\Phi_{-} = 2e^{-A}\operatorname{Re}\Phi_{+}$ $d_{H}(e^{A}\operatorname{Im}\Phi_{+}) + 3\operatorname{Re}\Phi_{-} = e^{4A} * F$ RR flux

[IIB]

III. AdS₄

 $\mathcal{N} = 1$ susy:

 $SU(3) \times SU(3)$ structure satisfying [Graña, Minasian, Petrini, AT '05] $d_{H}\Phi_{-} = 2e^{-A}\operatorname{Re}\Phi_{+}$ $d_{H}(e^{A}\operatorname{Im}\Phi_{+}) + 3\operatorname{Re}\Phi_{-} = e^{4A} * F$ RR flux

 $\mathcal{N} = 2$ susy: identity structure \gtrsim matrix of pure spinor pairs Φ_{\pm}^{IJ} [Passias, Solard, AT '17] $d_{H}\Phi_{-}^{(IJ)} = 2e^{-A}\operatorname{Re}\Phi_{+}^{(IJ)}$ $d_{H}(e^{A}\operatorname{Re}\Phi_{+}^{[IJ]}) = 0$ $d_{H}(e^{-A}\operatorname{Im}\Phi_{+}^{[IJ]}) + 3e^{-2A}\operatorname{Im}\Phi_{-}^{[IJ]} = -e^{A}f\epsilon^{IJ}F$

related to spinor norms

actually not so bad... many local solutions can be generated. Stay tuned

actually not so bad... many local solutions can be generated. Stay tuned

[Assel, Bachas, Estes, Gomis '11; d'Hoker, Estes, Gutperle '07]

Conclusions

• In higher dimensions, explicit classifications are emerging

• Also AdS6: [d'Hoker, Gutperle, Karch, Uhlemann '16...]

• This is inspiring new solutions in lower dimensions

• Even in AdS4, new strategies to classify extended susy

To any of our solutions

$$e^{2A}ds_{AdS_{7}}^{2} + dr^{2} + v^{2}ds_{S^{2}}^{2}$$

$$e^{2A}ds_{7}^{2} + dr^{2} + \frac{v^{2}}{1+16(X^{5}-1)v^{2}}e^{2A}ds_{S^{2}}^{2}$$

an Ansatz for a consistent truncation!

fields: $g^{(7)}_{\mu\nu}, A^i_{\mu}, X$

[Passias, Rota, AT '15]

To any of our solutions

$$e^{2A}ds_{AdS_{7}}^{2} + dr^{2} + v^{2}ds_{S^{2}}^{2}$$

$$e^{2A}ds_{7}^{2} + dr^{2} + \frac{v^{2}}{1+16(X^{5}-1)v^{2}}e^{2A}ds_{S^{2}}^{2}$$

an Ansatz for a consistent truncation!

fields:
$$g^{(7)}_{\mu\nu}, A^i_{\mu}, X$$

[Passias, Rota, AT '15]

• RG flows from AdS77 to AdS5 \times Σ_2 and AdS4 \times Σ_3

One can use it to establish

- $AdS_3 \times \Sigma_4$ solutions
- non-susy AdS₇ solution