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Systoles and Extremal Length

A classic problem deals with isoperimetric inequalities.

For a region D ⊂ R
2 (with the flat euclidean metric) and a region D:

A = Area(D) , L = length(∂D)

The ratio L2/A is bounded below:

L2

A
≥ C → A ≤ CL2 → A ≤ 1

4π
L2

Clearly for a given area A we can make L as big as we want.

2



On a manifold M with a Riemannian metric one defines the systole
as the length L of the shortest non-contractible curve.

For a given L, what can we tell about the area for general metric?

A ≥ C(systole)2 = C L2 → L2

A
≤ C ′

This is an isosystolic inequality. Can one find C ′?

Loewner (1949) found that for a torus

L2

A
≤ 2√

3

and the equality occurs for flat torus with τ = exp(iπ/3).

The constant is not known for genus two nor is the metric nor the
conformal structure known.
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In conformal geometry a metric is a function ρ(z) with z = x+ iy and
with a length element and area element

ds = ρ|dz| , dA = ρ2 dx ∧ dy .

Define Γ as a collection of curves of interest on some surface M .

Pick a metric ρ on the surface.

Find the systole in Γ: L(Γ, ρ)

Find the area A(ρ)

Compute the ratio and maximize over ρ:

Extremal length = λ ≡ Maxρ

(L2(Γ, ρ)

A(ρ)

)

Since L2/A is scale invariant, given a ρ one can scale it until the
systole is equal to one. This becomes a minimal area problem.
Extremal Length is a conformal invariant.
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Minimal Area Problem:

Given a genus g Riemann surface with n ≥ 0 marked points
(n ≥ 2 for g = 0) find the metric of minimal (reduced) area
under the condition that the length of any non-contractible
closed curve be greater than or equal to 2π.

The extremal metric on the surface R tells us how the surface is built
with vertices and propagators.

Expect that the surface is covered by bands of systolic geodesics!

The minimal area metrics are known for genus zero and any number
of punctures (classical closed string field theory).
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Some metrics are known for any Mg,n but some are not. Metrics are
not known when bands of systolic geodesics cross.

Find simple case where systolic geodesics cross.



The basic problem in conformal geometry ask for the least area
metric on a rectangle!

If we identify the left and right edges, the surface is an annulus, and
the curves must begin and end with the same value of y.
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The metric ρ = 1 is admissible: all length constraints work.

In fact, ρ = 1 is the minimal area metric!

Both for the rectangle and for the annulus!

The extremal length is

λ =
L2

A
=

a2

ab
=

a

b
= modulus of a quadrilateral
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Two Surfaces

Swiss cross problem:

Torus with a boundary!

They ARE the SAME problem

With ℓγ ≥ 3, the metric ρ = 1 is admissible.
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Convex Optimization and Duality

Book by S. Boyd and L. Vandenberghe available online.

Let C ⊆ R
n.

C is affine if the full line going through any two distinct points in C
lies in C.

C is convex if the line segment joining any two distinct points in C
lies in C.

A function f : Rn → R is convex if its domain is a convex set and for
all x, y in that domain

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) ∀t ∈ [0,1] .

A function h : Rn → R is affine if it is the sum of a linear function and
a constant function.

It is natural to search for the minimum of a convex function and for
the maximum of a concave function.
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The Primal

Consider the following optimization problem presented in standard
form

Minimize f0(x) over x ∈ D
subject to fi(x) ≤ 0 i = 1, . . . ,m ,

hi(x) = 0 i = 1, . . . , p ,

x ∈ R
n is the variable we minimize over.

f0(x) is the objective function

fi’s with i ≥ 1 define the inequality constraints

hi’s define the equality constraints.

D is the common domain of all the functions.

The feasible set F is the subset of D where the constraints hold.

The optimal value p∗ = minx∈F f0(x) .

x∗ is said to be an optimal point if x∗ ∈ F and f0(x∗) = p∗.
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The above problem is a convex program if:

– f0(x) and the fi(x) are convex functions over a convex D

– the hi are affine functions.

For a convex program any local minimum is in fact a global
minimum.

Build the Lagrangian L(x, λ, ν):

L(x, λ, ν) ≡ f0(x) +
∑

i

λifi(x) +
∑

i

νi hi(x) .

Minimizing over x yields a concave dual Lagrangian L̃(λ, ν):

L̃(λ, ν) ≡ inf
x∈D

L(x, λ, ν) .

A key result:

L̃ (λ ≥ 0, ν) ≤ p∗ .
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With L̃(λ, ν) concave we define the dual program:

Maximize L̃(λ, ν) over λ, ν ,

subject to λ ≥ 0 .

This is a convex program. We have a dual optimum d∗ for (λ∗, ν∗) if

d∗ ≡ sup
λ≥0,ν

L̃ (λ, ν) = L̃(λ∗, ν∗) .

Moreover, d∗ ≤ p∗

Strong duality: d∗ = p∗.

Strong duality is guaranteed when the primal is convex and there exists a feasible
point x in the interior of D where the inequality constraints are strictly satisfied.

If strong duality holds with x∗ ∈ F and (λ∗, ν∗), the inequality
constraints and their Lagrange multipliers satisfy complementary
slackness:

λ∗
ifi(x

∗) = 0 , for each i .

As a result

f(x∗) < 0 → λ∗
i = 0

λ∗
i > 0 → f(x∗) = 0

1
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Max Flow - Min Cut Theorem

A source s a sink t, a series of nodes, oriented edges with capacities.

Question: What is the Max Flow one can get from source to sink?
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A cut is evaluated by adding the flows that go out of the source
region:

1
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Freedman and Headrick’s reformulation of Ryu-Takayanagi via Max
Flow Min Cut.

Maxv

[

Flux of v across A0

]

= MinA∼A0
area(A)

1
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The Primal and the Dual Programs

Riemann surface M

Homology 1-cycles Cα ∈ H1(M), α ∈ J

Minimize the area of M with all curves in Cα have length ≥ ℓα.

gµν = Ω g0µν, with g0 fiducial.

Area of M is
∫

M
d2x

√

g0Ω .

Parameterize curves as yµ(t) : [0,1] → M . length(m) =
∫

m

√
Ω|ẏ|

0
.

The minimal area problem,

Minimize

∫

M

√

g0Ω over Ω ≥ 0

subject to: ℓα −
∫

m

√
Ω |ẏ|

0
≤ 0 , ∀α ∈ J, m ∈ Cα .

The length condition is applied to an infinite set of curves.
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Calibration one-form u : du = 0 , |u| ≤ 1 .

The period of a calibration in a homology class C constrains the
length of all curves γ ∈ C

length(γ) ≥
∣

∣

∣

∫

C

u
∣

∣

∣
(Min Cut = Max Flow)

Introduce a calibration uα with period ℓα for each Cα.

The new program, the primal is convex:

Minimize

∫

M

√

g0Ω over Ω, uα

subject to: |uα|20 −Ω ≤ 0 ,

duα = 0 ,

ℓα −
∫

Cα

uα = 0 , ∀α ∈ J .

Systolic geodesics in Cα have length ℓα. On them |uα|20 = Ω (|u| = 1)
and ûα is tangent to them.
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Dual program: functions ϕα on the surface and positive constants να

Maximize
[

2
∑

α

ναℓα −
∫

M ′
d2x

√

g0
(

∑

α

|dϕα|0
)2 ]

over ϕα, να

subject to: ∆ϕα|mα
= να ,

ϕα|∂M = 0 , ∀α ∈ J .

Here | · |0 denotes norm in the fiducial metric

mα is a choice of a curve in Cα.

ϕα has discontinuity να across mα.

First term in objective tries to make να large;

A non-zero jump, however, forces dϕα 6= 0, making the second term
larger in magnitude

First term is linear second is quadratic, so there should be a
maximum.

Any trial values for να and ϕα give rigorous lower bounds for the area.
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Complementary slackness and strong duality are used to show that

1. The α-systolic geodesics (if any) are the level sets of ϕα wherever
it has non-zero gradient.

2. The area for the extremal metric is the sum of areas of flat
rectangles of height να and length ℓα.

∑

α

ναℓα = Extremal area .

1
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The Results

Primal results

4.675 148 996 Nc =30

4.675 147 657 Nc=40

4.675 146 317 Nc=45 Extremal area = 4.675 145 (± 1) .

Dual result

4.675 144 775 Nc=48

2
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Systolic geodesics for the swiss cross

In the region with two bands of geodesics the curvature is positive.

In the region with one band of geodesic the metric is flat.

In the boundary between the two regions we got negative curvature.

2
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Behavior of the curvature:

Bulk positive curvature and negative line curvature singularity!

Metric is complicated in general but area formula is simple and holds.

For a swiss cross of ℓs = 2, for example, one finds A∗ = 2.806975 and
height of foliation ν = 0.701744 Then,

A∗ = 2 νℓs = 2(0.701744) ∗ 2 = 2.80698

2
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Systolic geodesics for the torus with a boundary

2
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Conclusions and open questions

• First example of extremal metric with crossing bands of systolic
geodesics.

• The metrics may be complicated but the heights/area relation
for the extremal metric is simple.

• Improve accuracy and understand better the behavior of
curvature near corners

• Figure out the extension to other tori with boundary or tori with
holes, as relevant to string field theory.

• Cases when more than two foliations of geodesics cross.

• Duality with inequality constraints in string theory?
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