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Overview

1) SUSY field theories on curved backgrounds

2)   Brane worldvolume theories in flux backgrounds

3)   Worldvolume flux and nonlinear instantons



SUSY field theories on curved spaces

𝒁𝑺𝟒 ∼ 𝒆𝑲/𝟏𝟐 Benini, Cremonesi ‘12; Jockers, Kumar, Lapan, Morrison, 
Romo ’12; Gerchkovitz, Gomis, Komargodski ’14, …

• Partition functions of the theory on different curved spaces 
might yield to a number of refined observables

• Supersymmetric localization allows to compute partition 
functions on compact spaces from supersymmetric 
instanton solutions.

• These partition functions contain specific information of 
field theory, Kähler potential for N=2 SCFTs: 

Witten ’83; Witten ’88; Pestun ’08; …



SUSY field theories on curved spaces

• topological twist: gauge R-symmetry

𝝯𝒎𝞮 + 𝑨𝒎 ∙ 𝞮 = 𝟎

Johansen ’94; Witten ’94

𝒎𝐏𝐥 → ∞

• Coupling to off-shell supergravity allows for background 
profiles for fields that usually are auxiliary. Festuccia, Seiberg ’11, …

• New minimal supergravity:

(𝑽 =∗ 𝒅𝑩)𝞭𝞧𝒎 = 𝝯𝒎𝞮 + 𝑨𝒎 ∙ 𝞮 + 𝑽𝒏𝞬
𝒏𝞬𝒎𝞮 = 𝟎

Sohnius, West ’81, ‘82

• By coupling the SUSY field theory to a non-dynamical 
(‘off-shell’) supergravity multiplet it can be defined on a 
variety of curved (compact) spaces. Festuccia, Seiberg ’11, …

• Non-dynamical supergravity effectively means the limit:



Can these supersymmetric field 

theories arise in string theory? 

What can we learn from such 

a string theory embedding? 



Field theory limit for branes

• Effectively, in this limit 𝑴 just becomes the normal bundle 𝑵𝜮

𝑴

𝜮

𝑵𝜮

• Supersymmetric field theories naturally appear on the 
worldvolume of calibrated branes in string theory

• Gravity is decoupled by making normal directions very big:

𝒎𝐏𝐥
𝒑−𝟏 ∼

𝐯𝐨𝐥(𝑴)

𝐯𝐨𝐥(𝜮)
𝒎(𝟏𝟎)

𝟖 → ∞



Calibration condition

• In the vicinity of the brane:

ȁ𝑻𝑴 = 𝑻𝜮 ⊕ 𝑵𝜮
𝜮

𝐒𝐎 𝟏, 𝟗 → 𝐒𝐎 𝟏, 𝒑 ⨉ 𝐒𝐎 𝟗 − 𝒑

Lorentz group R-symmetry group

• Calibration condition:

𝝘𝝹𝞮 = 𝞮 kappa symmetry

• In general 𝝘𝝹 is complicated function of worldvolume flux, 
but if that flux is zero we have

𝝘𝝹 = 𝝲(𝒑+𝟐)𝑷𝒑

𝒎 𝒂𝑴• indices: →

⨉

(where 𝑷𝒑 in sl(2,Z))

roughly:



Example: Branes in Calabi-Yau manifolds

• The best-understood supersymmetric string theory 
backgrounds are Calabi-Yau manifolds without fluxes

• It is known that D3-branes wrapping holomorphic four-
cycles in a Calabi-Yau threefold are supersymmetric

෡𝝯𝑴ො𝞮 = 𝟎

• The resulting worldvolume theory is a topologically twisted 
supersymmetric field theory on a Kähler manifold

Bershadsky, Vafa, Sadov ‘95
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Let’s prove it!



Example: Branes in Calabi-Yau manifolds

• Combine 

Thus connection ෡𝝯𝒎 is block-diagonal at brane

෡𝝯𝒎𝞮 = 𝟎 and 𝝲(𝒑+𝟐)𝑷𝒑𝞮 = 𝞮

෡𝝯𝒎, 𝝲(𝒑+𝟐) 𝞮 = 𝟎 𝞈𝒎 𝒏𝒂 = 𝟎

{෡𝝯𝒎, 𝝲(𝒑+𝟐)}𝞮 = 𝟎 𝝯𝒎𝞮 + 𝑨𝒎 ∙ 𝞮 = 𝟎

with topological twist 𝑨𝒎 = 𝞈𝒎 𝒂𝒃ො𝝲
𝒂𝒃

• Note:    ෡𝝯𝒂𝞮 = 𝟎 determines embedding of the brane 



Where do the auxiliary fields come from?



Branes in flux backgrounds

• In general (type IIB) flux backgrounds the supersymmetry 
condition is much more involved:

𝞭𝞧𝑴 = ෡𝝯𝑴𝞮 + ෡𝑯𝑴𝑷𝞮 + 𝒆𝞥෍

𝒏

෡𝑭(𝟐𝒏+𝟏)𝝘𝑴𝑷𝒏𝞮

𝞭𝞴 = 𝝏𝑴𝞥 𝝘𝑴𝞮 + ෡𝑯𝑷𝞮 + 𝒆𝞥෍

𝒏

෡𝑭 𝟐𝒏+𝟏 𝝘𝑴𝑷𝒏𝞮

where 𝑷, 𝑷𝟏 and 𝑷𝟐 = 𝑷𝟎 generate Sl(2,R).

• We can combine those equations again with the calibration 
condition

𝝲(𝒑+𝟐)𝑷𝒑𝞮 = 𝞮



Branes in flux backgrounds

 differential conditions that determine whether the 
worldvolume field theory is supersymmetric.

 algebraic constraints that eliminate some of the 
components of the 10d fields on the worldvolume

The resulting equations split into three kinds:

 differential conditions on the embedding of the 
brane into the ambient geometry 

HT ’15
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Example: Supersymmetry on D3-brane

• Differential conditions on D3-brane:

𝝯𝒎𝞮
𝒊 + 𝑨𝒎 𝒋

𝒊 𝞮𝒋 + 𝑻𝒊𝒋𝒏𝒑𝝲
𝒏𝒑𝝲𝒎𝞮𝒋 + 𝝲𝒎𝞰

𝒊 = 𝟎

𝟏

𝞽𝟐
(𝝏𝒎𝞽)𝞬

𝒎𝞮𝒊 + 𝑬𝒊𝒋𝞮
𝒋 + 𝟄𝒊𝒋𝒌𝒍𝑻

𝒌𝒍
𝒏𝒑𝝲

𝒏𝒑𝞮𝒋 = 𝟎

• Extra terms are coming from fluxes:

𝑻𝒊𝒋𝒎𝒏 = 𝒆𝞥(𝑭𝒂𝒎𝒏 − 𝞽𝑯𝒂𝒎𝒏)
(𝑨𝑺𝑫)ො𝝲𝒂 𝒊𝒋

𝑬𝒊𝒋 = 𝒆𝞥 𝑭𝒂𝒃𝒄 − 𝞽𝑯𝒂𝒃𝒄 ො𝝲𝒊𝒋
𝒂𝒃𝒄

• The 𝞰 term is special superconformal transformation. 

𝞽 = 𝒄𝟎 + 𝐢𝒆−𝞥

• Agrees with SUSY variations of N=4 conformal SUGRA



SCFT coupled to conformal supergravity

• All other components of 10d fields decouple from field theory

N=4 SYM in 4d 
coupled to N=4 
conformal SUGRA

D3 branes in 10d 
flux background

FT limit

4d auxiliary fields
10d fluxes & 
curvature

• SUSY equations and field content match N=4 conformal SUGRA

• By introducing other sources in 10d, this can easily be 
generalized to theories with less supersymmetry.



General branes 

• Example: couplings of 6d (2,0) tensor theory in terms of 
M5-branes in M-theory flux backgrounds 

• We can use same techniques in any dimension and with 
any amount of supercharges in string and M-theory.

• Non-conformal N=4 brane systems couple to N=4 background 
supergravity multiplet that was not known before.

(no Lagrangian description needed)

HT ’15; Maxfield, Robbins, Sethi ’15

• Other cases of conformal branes: M2- and M5-branes

• Are there new off-shell supergravity theories to be discovered?



What about worldvolume flux? 



Calibrated branes with worldvolume flux

• To understand the calibration condition, we have to include 
both the supersymmetries 𝞮+ preserved by the FT vacuum 
and the 𝞮− that are broken in that vacuum. 

• In general the supersymmetry preserved by the brane 
depends on 𝑭 and differs from the one for 𝑭 = 𝟎. 

𝝘𝝹 = 𝑵(𝑭)−𝟏𝐞𝐱𝐩 𝑭 𝑷 𝝲(𝒑+𝟏)𝑷𝒑

𝑵(𝑭) = (𝐝𝐞𝐭(𝜾∗(𝒈) + 𝑭)/𝐝𝐞𝐭(𝜾∗(𝒈)))𝟏/𝟐
where

• If theory is SUSY on curved space for 𝑭 = 𝟎, then both 

𝞮± = (𝟏 ± 𝝲 𝒑+𝟏 𝑷𝒑)𝞮



Non-linear instantons

• For D3 branes: 𝑭𝞮+ = (𝟏 + 𝑵 𝑭 + 𝑭˄𝑭)𝞮−

linear 
SUSY

non-linear 
SUSY

• For 𝞮− = 𝟎 this is the standard instanton equation.

• This is the non-linear instanton equation already studied in
Bagger, Galperin ’96; Seiberg, Witten ’99; Mariño, Minasian, Moore, Strominger ’99

Minasian, Prins, HT ‘17

• The non-linearity for 𝞮− can be understood as a spontaneous 
partial supersymmetry breaking and ‘explains’ the DBI action  

Bagger, Galperin ’96; Tseytlin, Rocek ’98

• In many flux backgrounds (not IIB on warped CY with ISD flux) 
𝞮− is non-zero, for instance along baryonic branch that inter-
polates between Klebanov-Strassler and Maldacena-Nuñez.

Aharony ’01; Gubser, Herzog, Klebanov ’04; Butti, Graña, Minasian, Petrini, Zaffaroni ’04

Gaugino
variation:



Coupling to background supergravity

• Since we want to study arbitrary combinations of 𝞮+ and 𝞮−, 
both must be coupled to background SUGRA

Minasian, Prins, HT ‘17

• We can again find 4d SUSY equations for SUSY backgrounds 
starting from 10d SUSY variations. This rewriting is similar to 
the SU(8)-covariant rewriting of 11d SUGRA De Wit, Nikolai ‘86

𝝯𝒎𝞮
𝒊 + 𝑨𝒎 𝒋

𝒊 𝞮𝒋 + 𝑻𝒊𝒋𝒏𝒑𝝲
𝒏𝒑𝝲𝒎𝞮𝒋 +𝑲𝝲𝒎𝞮

𝒊 = 𝟎

SU(8)-reps 63 28 368

• Coupling to background SUGRA treats 𝞮+ and 𝞮− in same way. 

• Can describe SUSY FTs where SUSY is spont. broken, but non-
linear SUSY instantons exist. Localization possible?

• For anti-branes: Only 𝞮− preserved by gravitational background



Conclusions

• For any dimension and number of supercharges:

Field theory coupled to 
background SUGRA

Branes in flux 
background

FT limit

4d auxiliary fields
10d fluxes & 
curvature

• Both linear and non-linear supercharges are coupled to 
supergravity background in exactly the same way.

• Possible supergravity backgrounds seem to be more general 
than known off-shell formulations of supergravity.



Discussion

• “Landscape” of SUSY flux vacua means there should be a rich 
class of supersymmetric field theories on curved backgrounds

• Non-linear instantons might help to use localization 
for theories with spontaneous SUSY breaking

• Describe field theories of wrapped branes in this way?

• Does this help to better understand anti-branes?

• Impact of string dualities on field theories?



Thank you!



Backup slides



Match with conformal N=4 supergravity

4d Weyl multiplet 10d fields

𝑻𝒊𝒋𝒎𝒏

𝒆𝒎𝝁

𝑯𝒂𝒎𝒏, 𝑭𝒂𝒎𝒏

𝑬𝒎𝝁

𝑬𝒊𝒋 𝑯𝒂𝒃𝒄, 𝑭𝒂𝒃𝒄

𝑫𝒌𝒍
𝒊𝒋 𝐑𝒂𝒎𝒃

𝒎

6-1

d.o.f.

20

36

20

𝞽 𝒄𝟎, 𝞥 2

• bosonic fields:

𝑨𝒎 𝒋
𝒊 𝞈𝒎 𝒂𝒃, 𝑭𝒎, 𝑭𝒎𝒂𝒃𝒄𝒅 45

128



Match with conformal N=4 supergravity

4d Weyl multiplet 10d fields

𝞬𝒎𝝯𝒎𝞧𝒂𝝌𝒋𝒌
𝒊

𝞧𝒎𝞧𝒎
𝒊

𝞴𝞴𝒊

d.o.f.

48-16

16

80

• fermionic fields:

128

• Also supersymmetry variations can be matched precisely

• Note: There is an additional projection for 𝝯𝒎𝞧𝒂 and 𝐑𝒂𝒎 𝒃𝒏.  

Without this projection we would get larger multiplet.

Are there larger N=4 conformal multiplets? 



M5-branes and conformal (2,0) supergravity

𝑻𝒊𝒋𝒎𝒏𝒑

𝒆𝒎𝝁

𝑮𝒂𝒎𝒏𝒑

𝑬𝒎𝝁

𝑫𝒌𝒍
𝒊𝒋 𝐑𝒂𝒎𝒃𝒎

15-1

14

50

𝑨𝒎 𝒋
𝒊 𝞈𝒎 𝒂𝒃, 𝑮𝒎𝒂𝒃𝒄 50

6d Weyl multiplet 11d fields

𝞬𝒎𝝯𝒎𝞧𝒂𝝌𝒋𝒌
𝒊

𝞧𝒎𝞧𝒎
𝒊

d.o.f.

80-16

64

128+128


