Generalized

Kinematics \& Dynamics

A para-Hermitian Geometry for DFT

Felix J. Rudolph
 Ludwig-Maximilians-Universität München
 Based on arXiv: I 706.07089
 With L. Freidel \& D. Svoboda

String Dualities and Geometry
Centro Atomico Bariloche January 18,2018

Question

- What is the relation between
"Doubling" the tangent space of manifold M
extended vector bundle

$$
\mathbb{T} M=T M \oplus T^{*} M
$$

Question

- What is the relation between
"Doubling" the tangent space of manifold M
extended vector bundle

$$
\mathbb{T} M=T M \oplus T^{*} M
$$

Generalized Geometry

"Doubling" the underlying manifold M

Double Field

 Theory
doubled space (locally)

$$
\mathcal{P} \cong M \times \tilde{M}
$$

Context \& Overview

Context

- Arena of string theory: doubled space

Context

- Arena of string theory: doubled space
- Coordinates for winding and momentum modes
\Rightarrow Double Field Theory
[Siegel; Hull, Zwiebach]
- Phase space of string probes
="Metastring Theory"

Context

- Section condition - restrict coordinate dependence
- Tools from Generalised Geometry
= Courant bracket, Dorfman derivative
- Understand nature of doubled space
- Understand relation to extended tangent bundle of GG

Key Points

- Para-Hermitian Manifold \mathcal{P}
- Bi-Lagrangian Splitting \& Foliation
- Isomorphism between $\mathbb{T} M$ and $T \mathcal{P}$

Outline

I. Overview of GG and DFT
2. para-Hermitian Geometry
3. Foliation \& Isomorphism

Overview of GG and DFT

Generalized Geometry

"Double" the tangent space of manifold M :

$$
\begin{aligned}
& \text { extended vector bundle } \\
& \qquad \mathbb{T} M=T M \oplus T^{*} M
\end{aligned}
$$

Generalized Geometry

"Double" the tangent space of manifold M :

extended vector bundle

$$
\mathbb{T} M=T M \oplus T^{*} M
$$

- Generalized vectors: $X=(x, \alpha) \in \Gamma(\mathbb{T} M)$
- Natural $O(d, d)$ pairing: $\quad \eta(X, Y)=\iota_{x} \beta+\iota_{y} \alpha$
- Dorfman bracket: $\llbracket X, Y \rrbracket=\left([x, y], \mathcal{L}_{x} \beta-\iota_{y} \mathrm{~d} \alpha\right)$

Double Field Theory

"Double" the underlying manifold M :
doubled space (locally)

$$
\mathcal{P} \cong M \times \tilde{M}
$$

Double Field Theory

"Double" the underlying manifold M :
doubled space (locally)

$$
\mathcal{P} \cong M \times \tilde{M}
$$

- Doubled coordinates: $x^{M}=\left(x^{\mu}, \tilde{x}_{\mu}\right), \partial_{M}=\left(\partial_{\mu}, \tilde{\partial}^{\mu}\right)$
- $O(d, d)$ metric on $\mathcal{P}: \quad \eta=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- D-bracket:

$$
[X, Y]_{\mathrm{D}}^{M}=X^{N} \partial_{N} Y^{M}-Y^{N} \partial_{N} X^{M}+\eta^{M N} \eta_{K L} \partial_{N} X^{K} Y^{L}
$$

The Constraint

"Section Condition"
$\eta^{A B} \partial_{A} \otimes \partial_{B}=0$

The Constraint

"Section Condition"

$$
\eta^{A B} \partial_{A} \otimes \partial_{B}=0
$$

Fields are independent of \tilde{x}

- Simple solution: $\tilde{\partial}=0$
- If imposed: DFT reduces to generalized geometry

DFT to GG

- Want to relate $\mathbb{T} M$ and $T \mathcal{P}$
need to identify

$$
\frac{\partial}{\partial \tilde{x}} \leftrightarrow \mathrm{~d} x
$$

- Formally possible if section condition is imposed
- C/D-brackets \rightarrow Courant/Dorfman brackets

GG vs DFT

- After imposing section condition
\Rightarrow only depend on half the coordinates
\Rightarrow DFT reduces to GG
- But different ways of picking spacetime M
\Rightarrow Which half of \mathcal{P} is base for GG?

Need extra geometric information to relate GG to DFT!

para-Hermitian Geometry

para-Hermitian Geometry

(almost) para-Hermitian manifold \mathcal{P} with (η, ω) and $K:=\eta^{-1} \omega$

doubled space $=$ para-Hermitian manifold

- metric η and symplectic form ω

$$
K^{2}=+1
$$

- bi-Lagrangian structure $K: T \mathcal{P}=L \oplus \tilde{L}$

$$
\begin{array}{ll}
\left.K\right|_{L}=+1 & P=\frac{1}{2}(1+K) \\
\left.K\right|_{\tilde{L}}=-1 & \tilde{P}=\frac{1}{2}(1-K)
\end{array}
$$

Doubled Tangent Bundles

extended vector bundle over M :

$$
\mathbb{T} M=T M \oplus T^{*} M
$$

tangent space of \mathcal{P} :

$$
T \mathcal{P}=L \oplus \tilde{L}
$$

Doubled Tangent Bundles

extended vector bundle over M :

$$
\mathbb{T} M=T M \oplus T
$$

$$
\begin{aligned}
& \text { para-Hermitian manifold } \\
& \qquad \mathcal{P} \cong M \times \tilde{M}
\end{aligned}
$$

tangent space of \mathcal{P} :

$$
T \mathcal{P}=L \oplus \tilde{L}
$$

Lagrangian subspaces

Doubled Tangent Bundles

extended vector bundle over M :

$$
\mathbb{T} M=T M \oplus T^{*} M
$$

tangent space of \mathcal{P} :

$$
T \mathcal{P}=L \oplus \tilde{L}
$$

Foliation \& Isomorphism

Foliation

- If L is integrable, have d-dimensional foliation \mathcal{F} of \mathcal{P} (Frobenius Theorem)
- \mathcal{F} is partition of \mathcal{P} as set of leaves with $T \mathcal{F}=L$
- For every point $p \in \mathcal{P}$ there is a unique leaf M_{p} in \mathcal{F} that passes through p
- Foliation \mathcal{F} is disjoint union of leaves $\bigsqcup M_{p}$

Integrability

Foliation

Leaves

$$
T \mathcal{F}=L
$$

Foliation

Integrability

Foliation

Leaves

$$
T \mathcal{F}=L
$$

Isomorphism

Construct invertible map

$$
\rho: T \mathcal{P} \rightarrow \mathbb{T} \mathcal{F}=T \mathcal{F} \oplus T^{*} \mathcal{F}
$$

$$
\begin{gathered}
\rho: X \mapsto(P(X), \eta(\tilde{P}(X)))=(x, \alpha) \\
\rho^{-1}:(x, \alpha) \mapsto x+\eta^{-1}(\alpha):=x+\tilde{x}=X
\end{gathered}
$$

- Vector part of map is trivial
- One-form part of map uses η

Isomorphism

Tangent and cotangent space of \mathcal{F}

- Mapped to L and \tilde{L}

Isomorphism

$$
T^{*} \mathcal{F}=\rho(\tilde{L})
$$

$$
\frac{\partial}{\partial \tilde{x}} \leftrightarrow \mathrm{~d} x
$$

Brackets

- Map between D-bracket and Dorfman bracket

$$
\rho\left([X, Y]_{\mathrm{D}}\right)=\llbracket \rho(X), \rho(Y) \rrbracket
$$

D-bracket on

$$
T \mathcal{P}=L \oplus \tilde{L}
$$

Dorfman bracket on

$$
\mathbb{T} M=T M \oplus T^{*} M
$$

Importance of ω

- Doubled space is para-Hermitian
- Presence of symplectic structure ω gives bi-Lagrangian splitting and the map ρ
- Spacetime arises naturally

> Spacetime M is leaf of foliation \mathcal{F} with tangent $T \mathcal{F}=L=\operatorname{Im} P$.

- Basis for generalized geometry

Outlook

Outlook

- Use map to translate concepts of GG to doubled space
- Generalized connections
- Fluxes and twisted brackets
- Similar construction for Exceptional Geometry \& EFT
- Structures on exceptionally extended space
= Projectors and subspaces

Summary

- Doubled space is para-Hermitian manifold
- Bi-Lagrangian splitting of tangent bundle
- Foliation of doubled space
- Isomorphism between $\mathbb{T} M$ and $T \mathcal{P}$

Extensions

The Nijenhuis Tensor

For the bi-Lagrangian structure $K=\eta^{-1} \omega$

$$
\begin{aligned}
N_{K}(X, Y, Z)= & \stackrel{\circ}{\nabla}_{Y} \omega(X, K(Z))-\stackrel{\circ}{\nabla}_{X} \omega(Y, K(Z)) \\
& +\stackrel{\circ}{\nabla}_{K(Y)} \omega(X, Z)-\stackrel{\circ}{\nabla}_{K(X)} \omega(Y, Z) \\
= & \mathrm{d} \omega(K(X), K(Y), K(Z))+\mathrm{d} \omega(X, Y, K(Z)) \\
& +2 \stackrel{\circ}{\nabla}_{K(Z)} \omega(X, Y)
\end{aligned}
$$

Spacetime Geometry

$$
\{M,[\cdot, \cdot], g, \nabla\}
$$

Spacetime Geometry

set of points with differentiable structure

Lie bracket on $T M$

$$
\{M,[\cdot, \cdot], g, \nabla\}
$$

Spacetime Geometry

Kinematics \& Dynamics

$$
\{M,[\cdot, \cdot], g, \nabla\}
$$

Kinematical component

$$
(M,[\cdot, \cdot])
$$

- structure of spacetime
- symmetry algebra (diffeomorphisms)

Dynamical component

$$
(g, \nabla)
$$

- invariant action
- determines curvature
- fixes torsion

Generalization

- Generalization suitable for strings in a doubled space
- Kinematical structure encoded in (η, ω)
\Rightarrow Neutral metric $\eta \in O(d, d)$
- Symplectic form $\omega \in \operatorname{Sp}(2 d)$
- Dynamical d.o.f. in generalized metric $\mathcal{H}(g, B)$
\mathbb\{T\}M $=$ TM
$T \backslash$ mathcal $\{P\}=L$ loplus \backslash tilde $\{L\}$
$T \backslash$ mathcal $\{F\}=L$
\backslash rho: $T \backslash$ mathcal $\{P\} \backslash$ rightarrow \backslash mathbb $\{T\} \backslash$ mathcal $\{F\}=T \backslash$ mathcal $\{F\} \backslash o p l u s ~ T \wedge * \backslash$ mathcal $\{F\}$
N_K = 0
$T \wedge * \backslash$ mathcal $\{F\}=\backslash$ rho (\backslash tilde $\{L\}$)
$X=(x, \backslash a l p h a)$ in \backslash Gamma(\backslash mathbb $\{T\} M)$
\bigsqcup M_p
$T \backslash$ mathcal $\{F\}=L=\backslash$ mathrm $\{I m\} P$
$\backslash r h o \wedge\{-1\}:(x, \backslash a l p h a) \backslash$ mapsto $x+\backslash e t a \wedge\{-1\}(\backslash a l p h a):=x+\backslash t i l d e\{x\}=x$
\rho: $X \backslash$ mapsto $\backslash \operatorname{big}(P(X)$, \eta \backslash tilde $\{P\}(X)) \backslash b i g)=(X, \backslash a l p h a)$
$\backslash \operatorname{rho}([X, Y]-D)=[\backslash![\backslash r h o(X), \backslash r h o(Y)] \backslash!]$
$[\backslash![X, Y] \backslash!]=([x, y], \backslash$ mathcal $\{L\}$ _x

M

