Generalized Kinematics & Dynamics A para-Hermitian Geometry for DFT

Felix J. Rudolph Ludwig-Maximilians-Universität München

> Based on arXiv:1706.07089 With L. Freidel & D. Svoboda

String Dualities and Geometry Centro Atomico Bariloche January 18, 2018

What is the relation between

"Doubling" the tangent space of manifold ${\cal M}$

extended vector bundle

 $\mathbb{T}M = TM \oplus T^*M$

Generalized Geometry

Context & Overview

"Metastring Theory"

[Freidel, Minic, Leigh]

- Section condition restrict coordinate dependence
- Tools from Generalised Geometry
 - Courant bracket, Dorfman derivative
- Understand nature of doubled space
- Understand relation to extended tangent bundle of GG

- Para-Hermitian Manifold ${\cal P}$
- Bi-Lagrangian Splitting & Foliation
- Isomorphism between $\mathbb{T}M$ and $T\mathcal{P}$

- I. Overview of GG and DFT
- 2. para-Hermitian Geometry
- 3. Foliation & Isomorphism

Overview of GG and DFT

Generalized Geometry

"Double" the tangent space of manifold M:

extended vector bundle

 $\mathbb{T}M = TM \oplus T^*M$

"Double" the tangent space of manifold M :

- Natural O(d, d) pairing: $\eta(X, Y) = \iota_x \beta + \iota_y \alpha$
- Dorfman bracket: $[X, Y] = ([x, y], \mathcal{L}_x \beta \iota_y d\alpha)$

Double Field Theory

"Double" the underlying manifold M :

doubled space (locally) \sim

 $\mathcal{P} \cong M \times M$

"Double" the underlying manifold M :

• O(d,d) metric on \mathcal{P} : $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

• D-bracket:

 $[X,Y]_{\mathsf{D}}^{M} = X^{N} \partial_{N} Y^{M} - Y^{N} \partial_{N} X^{M} + \eta^{MN} \eta_{KL} \partial_{N} X^{K} Y^{L}$

"Section Condition"

$$\eta^{AB}\partial_A\otimes\partial_B=0$$

"Section Condition"

$$\eta^{AB}\partial_A\otimes\partial_B=0$$

Fields are independent of $\,\tilde{x}\,$

- Simple solution: $\tilde{\partial} = 0$
- If imposed: DFT reduces to generalized geometry

- Formally possible if section condition is imposed
- C/D-brackets \rightarrow Courant/Dorfman brackets

After imposing section condition

only depend on half the coordinates

- DFT reduces to GG
- But different ways of picking spacetime ${\cal M}$

 \blacksquare Which half of \mathcal{P} is base for GG?

Need extra geometric information to relate GG to DFT!

para-Hermitian Geometry

para-Hermitian Geometry

• (almost) para-Hermitian manifold \mathcal{P} with (η, ω) and $K := \eta^{-1} \omega$

doubled space = para-Hermitian manifold

- metric η and symplectic form $\,\omega$

• bi-Lagrangian structure $K: T\mathcal{P} = L \oplus L$

$$K|_{L} = +1$$
 $P = \frac{1}{2}(1+K)$
 $K|_{\tilde{L}} = -1$ $\tilde{P} = \frac{1}{2}(1-K)$

Doubled Tangent Bundles

extended vector bundle over \boldsymbol{M} :

$\mathbb{T}M = TM \oplus T^*M$

tangent space of \mathcal{P} : $T\mathcal{P} = L \oplus \tilde{L}$

Foliation & Isomorphism

Foliation

- If L is integrable, have d-dimensional foliation \mathcal{F} of \mathcal{P} (Frobenius Theorem)
- \mathcal{F} is partition of \mathcal{P} as set of leaves with $T\mathcal{F} = L$
- For every point $p \in \mathcal{P}$ there is a unique leaf M_p in \mathcal{F} that passes through p
- Foliation \mathcal{F} is disjoint union of leaves $| M_p |$

Isomorphism

Construct invertible map

$$\rho: T\mathcal{P} \to \mathbb{T}\mathcal{F} = T\mathcal{F} \oplus T^*\mathcal{F}$$

$$\rho: X \mapsto \left(P(X), \eta(\tilde{P}(X)) \right) = (x, \alpha)$$
$$\rho^{-1}: (x, \alpha) \mapsto x + \eta^{-1}(\alpha) := x + \tilde{x} = X$$

• Vector part of map is trivial

• One-form part of map uses η

Isomorphism

- Tangent and cotangent space of ${\mathcal F}$
- Mapped to L and \tilde{L}

Importance of ω

- Doubled space is para-Hermitian
- Presence of symplectic structure $\,\omega\,$ gives bi-Lagrangian splitting and the map $\,\rho\,$
- Spacetime arises naturally

Spacetime M is leaf of foliation \mathcal{F} with tangent $T\mathcal{F} = L = \operatorname{Im} P$.

Basis for generalized geometry

Outlook

Use map to translate concepts of GG to doubled space

Generalized connections

Fluxes and twisted brackets

- Similar construction for Exceptional Geometry & EFT
 - Structures on exceptionally extended space
 - Projectors and subspaces

Summary

- Doubled space is para-Hermitian manifold
- Bi-Lagrangian splitting of tangent bundle
- Foliation of doubled space
- Isomorphism between $\mathbb{T}M$ and $T\mathcal{P}$

Extensions

The Nijenhuis Tensor

For the bi-Lagrangian structure $K = \eta^{-1} \omega$

$$N_K(X, Y, Z) = \overset{\circ}{\nabla}_Y \omega(X, K(Z)) - \overset{\circ}{\nabla}_X \omega(Y, K(Z)) + \overset{\circ}{\nabla}_{K(Y)} \omega(X, Z) - \overset{\circ}{\nabla}_{K(X)} \omega(Y, Z)$$

 $= d\omega(K(X), K(Y), K(Z)) + d\omega(X, Y, K(Z))$ $+ 2\mathring{\nabla}_{K(Z)}\omega(X, Y)$

Spacetime Geometry

 $\{M, \, [\cdot \, , \cdot], \, g, \, \nabla\}$

Kinematics & Dynamics

$\left\{M, \, [\cdot \, , \cdot], \, g, \, \nabla\right\}$

Kinematical component

 $(M, [\cdot, \cdot])$

- structure of spacetime
- symmetry algebra (diffeomorphisms)

Dynamical component

- invariant action
- determines curvature
- fixes torsion

Generalization

- Generalization suitable for strings in a doubled space
- Kinematical structure encoded in (η, ω)
 - → Neutral metric $\eta \in O(d, d)$
 - $\blacksquare Symplectic form \quad \omega \in Sp(2d)$
- Dynamical d.o.f. in generalized metric $\mathcal{H}(g,B)$

\mathbb{T}M = TM\oplus T^*M
T\mathcal{P} = L \oplus \tilde{L}
T\mathcal{F} = L
\rho: T\mathcal{P} \rightarrow \mathbb{T}\mathcal{F} = T\mathcal{F} \oplus T^*\mathcal{F}
N_K = 0

T^*\mathcal{F} = \rho(\tilde{L})
X = (x,\alpha) \in \Gamma(\mathbb{T}M)
\bigsqcup M_p

M

 $T \in F = L = Mathrm{Im}P$

D

\rho^{-1}: (x,\alpha)\mapsto x+\eta^{-1}(\alpha) := x+\tilde{x} = X
\rho: X\mapsto \big(P(X),\eta(\tilde{P}(X))\big) = (x,\alpha)
\rho([X,Y]_D) = [\![\rho(X),\rho(Y)]\!]
[\![X,Y]\!] = ([x,y],\mathcal{L}_x\beta - \iota_y\dd\alpha)
[X,Y]_\mathsf{D}^M = X^N\partial_N Y^M - Y^N \partial_N X^M + \eta^{MN}\eta_{KL}\partial_NX^KY^L

 \mathcal{F} \mathcal{P}

 $T\mathcal{P}$