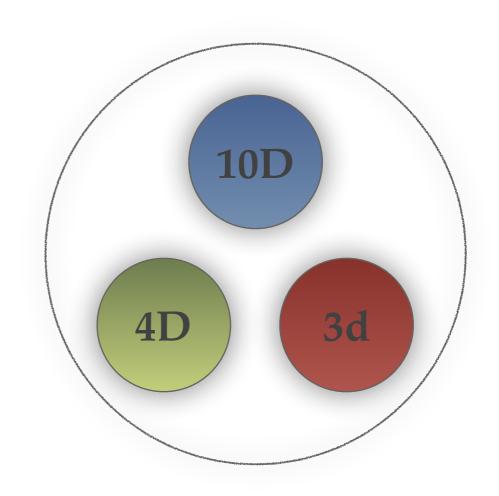
Progress in massive IIA holography

Adolfo Guarino

(Université Libre de Bruxelles)

String dualities and geometry
Bariloche, Argentina
January 18th



With D. Jafferis, J. Tarrío and O. Varela:

arXiv:1504.08009, arXiv:1508.04432, arXiv:1509.02526

arXiv:1605.09254, arXiv:1703.10833, arXiv:1706.01823

arXiv:1712.09549

Outlook

Electric-magnetic duality in N=8 supergravity

Massive IIA on S⁶ / SYM-CS duality

Holographic RG flows: domain-walls and black holes

Electric-magnetic duality in N=8 supergravity

Electric-magnetic deformations

• Uniqueness of maximal supergravities historically inherited from their connection to NH geometries of membranes and SCFT's

$$AdS_4 \times S^7$$
 (M2-brane) , $AdS_7 \times S^4$ (M5-brane) , $AdS_5 \times S^5$ (D3-brane)

• N=8 supergravity in 4D admits a deformation parameter *c* yielding inequivalent theories. It is an electric/magnetic deformation

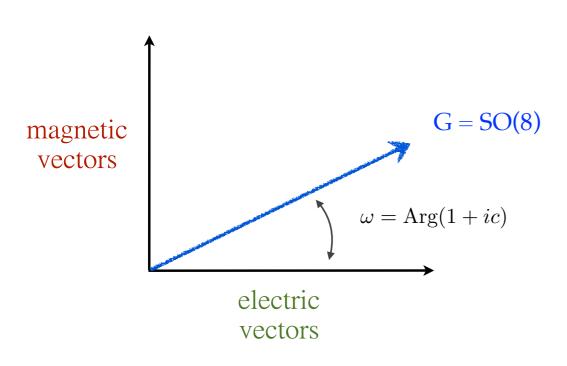
$$D = \partial - g \left(A^{\text{elec}} - c \tilde{A}_{\text{mag}} \right)$$

g = 4D gauge coupling c = deformation param.

[Dall'Agata, Inverso, Trigiante '12]

- There are two generic situations :
- 1) Family of SO(8)_c theories : $c = [0, \sqrt{2} 1]$ is a continuous param [similar for SO(p,q)_c]
- 2) Family of ISO(7)_c theories: c = 0 or 1 is an (on/off) param [same for ISO(p,q)_c]

$SO(8)_c$ vs $ISO(7)_c$

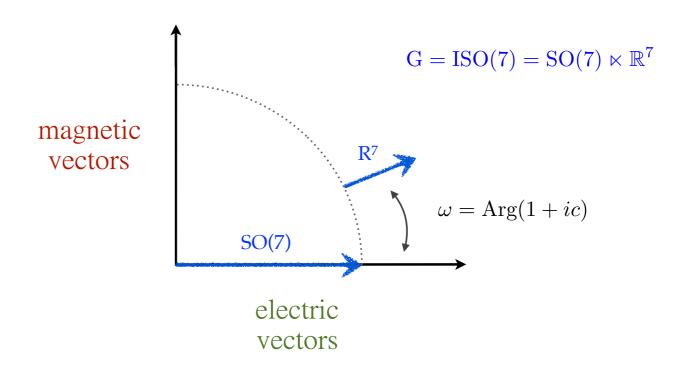


$$D = \partial - g \left(A^{\text{elec}} - \frac{c}{c} \tilde{A}_{\text{mag}} \right)$$

Higher-dimensional origin?

Obstruction for $SO(8)_c$, cf. [de Wit, Nicolai '13]

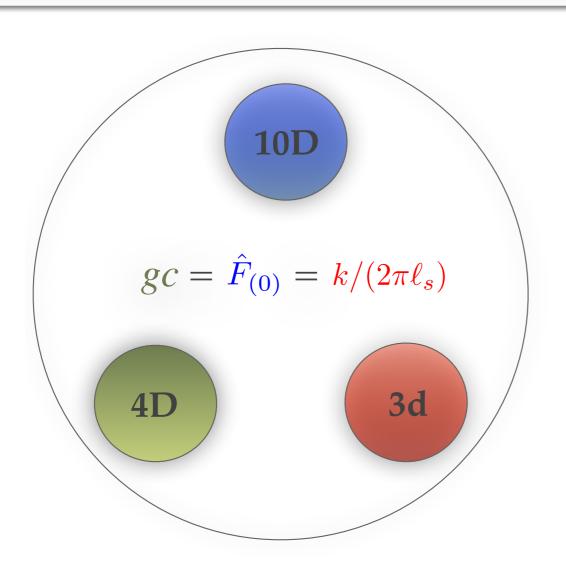
[Lee, Strickland-Constable, Waldram '15]



 $D = \partial - g A_{SO(7)}^{\text{elec}} - g \left(A_{\mathbb{R}^7}^{\text{elec}} - \frac{c}{c} \tilde{A}_{\mathbb{R}^7 \text{ mag}} \right)$

A new 10D/4D/3d correspondence

massive IIA on S^6 « ISO(7)_c-gauged sugra » SU(N)_k SYM-CS theory



gc = elec/mag deformation in 4D

 $\hat{F}_{(0)}$ = Romans mass in 10D

k = Chern-Simons level in 3d

[AG, Jafferis, Varela '15] [AG, Varela '15]

Well-established and independent dualities:

Type IIB on $S^5/N=4$ SYM — M-theory on $S^7/ABJM$ — mIIA on $S^6/SYM-CS$

Massive IIA on S^6 / SYM-CS duality

4D: ISO(7)_c Lagrangian

$$\mathbb{M} = 1,...,56$$
 $\Lambda = 1,...,28$
 $I = 1,...,7$

$$\mathcal{L}_{\text{bos}} = (R - V) \operatorname{vol}_{4} - \frac{1}{48} D \mathcal{M}_{\text{MN}} \wedge *D \mathcal{M}^{\text{MN}} + \frac{1}{2} \mathcal{I}_{\Lambda \Sigma} \mathcal{H}_{(2)}^{\Lambda} \wedge *\mathcal{H}_{(2)}^{\Sigma} - \frac{1}{2} \mathcal{R}_{\Lambda \Sigma} \mathcal{H}_{(2)}^{\Lambda} \wedge \mathcal{H}_{(2)}^{\Sigma}$$
$$+ g \, c \, \left[\mathcal{B}^{I} \wedge \left(\tilde{\mathcal{H}}_{(2)I} - \frac{g}{2} \delta_{IJ} \mathcal{B}^{J} \right) - \frac{1}{4} \tilde{\mathcal{A}}_{I} \wedge \tilde{\mathcal{A}}_{J} \wedge \left(d \mathcal{A}^{IJ} + \frac{g}{2} \delta_{KL} \mathcal{A}^{IK} \wedge \mathcal{A}^{JL} \right) \right]$$

 \bullet Setting c = 0, all the magnetic pieces in the Lagrangian disappear.

* Ingredients:

- Electric vectors (21+7): $\mathcal{A}^{IJ} = \mathcal{A}^{[IJ]}$ [SO(7)] and \mathcal{A}^{I} [R⁷] with $\mathcal{H}^{\Lambda}_{(2)} = (\mathcal{H}^{IJ}_{(2)}, \mathcal{H}^{I}_{(2)})$
- Auxiliary magnetic vectors (7): $\tilde{\mathcal{A}}_I$ [R⁷] with $\tilde{\mathcal{H}}_{(2)I}$ field strength
- $E_7/SU(8)$ scalars : \mathcal{M}_{MN}
- Auxiliary two-forms (7): \mathcal{B}^{I} [R⁷]
- Topological term : $g c [\dots]$
- Scalar potential: $V(\mathcal{M}) = \frac{g^2}{672} X_{\mathbb{M}\mathbb{N}}^{\mathbb{R}} X_{\mathbb{PQ}}^{\mathbb{S}} \mathcal{M}^{\mathbb{MP}} (\mathcal{M}^{\mathbb{NQ}} \mathcal{M}_{\mathbb{RS}} + 7 \delta_{\mathbb{R}}^{\mathbb{Q}} \delta_{\mathbb{S}}^{\mathbb{N}})$

\mathcal{N}	G_0	$c^{-1/3} \chi$	$c^{-1/3} e^{-\varphi}$	$c^{-1/3} \rho$	$c^{-1/3} e^{-\phi}$	$\frac{1}{4} g^{-2} c^{1/3} V_0$	M^2L^2
$\mathcal{N}=1$	G_2	$-\frac{1}{2^{7/3}}$	$\frac{5^{1/2} 3^{1/2}}{2^{7/3}}$	$-\frac{1}{2^{7/3}}$	$\frac{5^{1/2} 3^{1/2}}{2^{7/3}}$	$-\frac{2^{22/3}3^{1/2}}{5^{5/2}}$	$4 \pm \sqrt{6}$, $-\frac{1}{6}(11 \pm \sqrt{6})$
$\mathcal{N}=2$	U(3)	$-\frac{1}{2}$	$\frac{3^{1/2}}{2}$	0	$\frac{1}{2^{1/2}}$	$-3^{3/2}$	$3 \pm \sqrt{17}$, 2, 2
$\mathcal{N}=1$	SU(3)	$\frac{1}{2^2}$	$\frac{3^{1/2} 5^{1/2}}{2^2}$	$-rac{3^{1/2}}{2^2}$	$\frac{5^{1/2}}{2^2}$	$-rac{2^63^{3/2}}{5^{5/2}}$	$4\pm\sqrt{6},4\pm\sqrt{6}$
$\mathcal{N} = 0$	$SO(6)_{+}$	0	$2^{1/6}$	0	$\frac{1}{2^{5/6}}$	$-3 2^{5/6}$	$6, 6, -\frac{3}{4}, 0$
$\mathcal{N} = 0$	$SO(7)_{+}$	0	$\frac{1}{5^{1/6}}$	0	$\frac{1}{5^{1/6}}$	$-rac{35^{7/6}}{2^2}$	$6, -\frac{12}{5}, -\frac{6}{5}, -\frac{6}{5}$
$\mathcal{N} = 0$	G_2	$\frac{1}{2^{4/3}}$	$\frac{3^{1/2}}{2^{4/3}}$	$\frac{1}{2^{4/3}}$	$\frac{3^{1/2}}{2^{4/3}}$	$-rac{2^{10/3}}{3^{1/2}}$	6,6,-1,-1
$\mathcal{N} = 0$	SU(3)	0.455	0.838	0.335	0.601	-5.864	6.214,5.925,1.145,-1.284
$\mathcal{N} = 0$	SU(3)	0.270	0.733	0.491	0.662	-5.853	6.230,5.905,1.130,-1.264

 $[\]bullet$ N = 2 solution will play a central role in holography !!

10D: ISO(7)_c into type IIA supergravity

$$\begin{split} d\hat{s}_{10}^2 &= \Delta^{-1} \, ds_4^2 + g_{mn} \, Dy^m \, Dy^n \,, \\ \hat{A}_{(3)} &= \mu_I \mu_J \, \left(\mathcal{C}^{IJ} + \mathcal{A}^I \wedge \mathcal{B}^J + \frac{1}{6} \mathcal{A}^{IK} \wedge \mathcal{A}^{JL} \wedge \tilde{\mathcal{A}}_{KL} + \frac{1}{6} \mathcal{A}^I \wedge \mathcal{A}^{JK} \wedge \tilde{\mathcal{A}}_K \right) \\ &\quad + g^{-1} \, \left(\mathcal{B}_J{}^I + \frac{1}{2} \mathcal{A}^{IK} \wedge \tilde{\mathcal{A}}_{KJ} + \frac{1}{2} \mathcal{A}^I \wedge \tilde{\mathcal{A}}_J \right) \wedge \mu_I D \mu^J + \frac{1}{2} g^{-2} \, \tilde{\mathcal{A}}_{IJ} \wedge D \mu^I \wedge D \mu^J \\ &\quad - \frac{1}{2} \, \mu_I \, B_{mn} \, \mathcal{A}^I \wedge Dy^m \wedge Dy^n + \frac{1}{6} A_{mnp} \, Dy^m \wedge Dy^n \wedge Dy^p \,, \\ \hat{B}_{(2)} &= -\mu_I \, \left(\mathcal{B}^I + \frac{1}{2} \mathcal{A}^{IJ} \wedge \tilde{\mathcal{A}}_J \right) - g^{-1} \, \tilde{\mathcal{A}}_I \wedge D \mu^I + \frac{1}{2} B_{mn} \, Dy^m \wedge Dy^n \,, \\ \hat{A}_{(1)} &= -\mu_I \, \mathcal{A}^I + A_m \, Dy^m \,. \end{split}$$

where we have defined: $Dy^m \equiv dy^m + \frac{1}{2} g K_{IJ}^m A^{IJ}$, $D\mu^I \equiv d\mu^I - g A^{IJ} \mu_J$

The scalars are embedded as

$$g^{mn} = \frac{1}{4} g^2 \Delta \mathcal{M}^{IJKL} K_{IJ}^m K_{KL}^n , \quad B_{mn} = -\frac{1}{2} \Delta g_{mp} K_{IJ}^p \partial_n \mu^K \mathcal{M}^{IJ}_{K8} ,$$

$$A_m = \frac{1}{2} g \Delta g_{mn} K_{IJ}^n \mu_K \mathcal{M}^{IJK8} , \quad A_{mnp} = \frac{1}{8} g \Delta g_{mq} K_{IJ}^q K_{np}^{KL} \mathcal{M}^{IJ}_{KL} + A_m B_{np} .$$

N=2 solution of massive type IIA

• N=2 & U(3) AdS₄ point of the ISO(7)_c theory

$$\begin{split} d\hat{s}_{10}^2 &= L^2 \frac{\left(3 + \cos 2\alpha\right)^{\frac{1}{2}}}{\left(5 + \cos 2\alpha\right)^{-\frac{1}{8}}} \left[\, ds^2 (\mathrm{AdS_4}) + \frac{3}{2} \, d\alpha^2 + \frac{6 \sin^2 \alpha}{3 + \cos 2\alpha} \, ds^2 (\mathbb{CP}^2) + \frac{9 \sin^2 \alpha}{5 + \cos 2\alpha} \, \pmb{\eta}^2 \right] \,, \\ e^{\hat{\phi}} &= e^{\phi_0} \, \frac{\left(5 + \cos 2\alpha\right)^{3/4}}{3 + \cos 2\alpha} \qquad , \qquad \hat{H}_{(3)} &= 24\sqrt{2} \, L^2 \, e^{\frac{1}{2}\phi_0} \, \frac{\sin^3 \alpha}{\left(3 + \cos 2\alpha\right)^2} \, \pmb{J} \wedge d\alpha \,\,, \\ L^{-1} \, e^{\frac{3}{4}\phi_0} \, \hat{F}_{(2)} &= -4\sqrt{6} \, \frac{\sin^2 \alpha \cos \alpha}{\left(3 + \cos 2\alpha\right) \left(5 + \cos 2\alpha\right)} \, \pmb{J} - 3\sqrt{6} \, \frac{\left(3 - \cos 2\alpha\right)}{\left(5 + \cos 2\alpha\right)^2} \, \sin\alpha \, d\alpha \wedge \pmb{\eta} \,\,, \\ L^{-3} \, e^{\frac{1}{4}\phi_0} \, \hat{F}_{(4)} &= 6 \, \mathrm{vol}_4 \\ &\quad + 12\sqrt{3} \, \frac{7 + 3\cos 2\alpha}{\left(3 + \cos 2\alpha\right)^2} \, \sin^4 \alpha \, \mathrm{vol}_{\mathbb{CP}^2} + 18\sqrt{3} \, \frac{\left(9 + \cos 2\alpha\right)\sin^3 \alpha \cos \alpha}{\left(3 + \cos 2\alpha\right)} \, \pmb{J} \wedge d\alpha \wedge \pmb{\eta} \,\,, \end{split}$$

where we have introduced the quantities $L^2 \equiv 2^{-\frac{5}{8}} 3^{-1} g^{-2} c^{\frac{1}{12}}$ and $e^{\phi_0} \equiv 2^{\frac{1}{4}} c^{-\frac{5}{6}}$

★ The angle $0 \le \alpha \le \pi$ locally foliates S₆ with S₅ regarded as Hopf fibrations over \mathbb{CP}^2

- N=2 Chern-Simons-matter theory with simple gauge group SU(N), level k, three adjoint matter and cubic superpotential, as the CFT dual of the N=2 massive IIA solution.
- The 3d free energy F = -Log(Z), where Z is the partition function of the CFT on a Euclidean S₃, can be computed via localisation over supersymmetric configurations $N \gg k$

$$F = \frac{3^{13/6}\pi}{40} \left(\frac{32}{27}\right)^{2/3} k^{1/3} N^{5/3}$$

[Pestun '07] [Kapustin, Willett, Yaakov '09] [Jafferis '10] [Jafferis, Klebanov, Pufu, Safdi '11] [Closset, Dumitrescu, Festuccia, Komargodski '12 '13]

• The gravitational free energy can be computed from the warp factor in the N=2 massive IIA solution. Using the charge quantisation condition $N = -(2\pi\ell_s)^{-5} \int_{S^6} e^{\frac{1}{2}\phi} \hat{*}\hat{F}_{(4)} + \hat{B}_{(2)} \wedge d\hat{A}_{(3)} + \frac{1}{6}\hat{F}_{(0)}\hat{B}_{(2)}^3$ for the D2-brane, one finds

$$F = \frac{16\pi^3}{(2\pi\ell_c)^8} \int_{S^6} e^{8A} \text{vol}_6 = \frac{\pi}{5} 2^{1/3} 3^{1/6} k^{1/3} N^{5/3} \qquad \text{provided}$$

$$g c = \hat{F}_{(0)} = k/(2\pi \ell_s)$$

Holographic RG flows: domain-walls and black holes

• RG flows are described holographically as non-AdS₄ solutions in gravity

• D2-brane:

$$d\hat{s}_{10}^{2} = e^{\frac{3}{4}\phi} \left(-e^{2U}dt^{2} + e^{-2U}dr^{2} + e^{2(\psi - U)}ds_{\Sigma_{2}}^{2} \right) + g^{-2}e^{-\frac{1}{4}\phi}ds_{S^{6}}^{2}$$

$$e^{\hat{\Phi}} = e^{\frac{5}{2}\phi}$$

$$\hat{F}_{(4)} = 5 g e^{\phi} e^{2(\psi - U)} dt \wedge dr \wedge d\Sigma_{2}$$

with
$$e^{2U} \sim r^{\frac{7}{4}}$$
, $e^{2(\psi-U)} \sim r^{\frac{7}{4}}$ and $e^{\varphi} = e^{\phi} \sim r^{-\frac{1}{4}}$

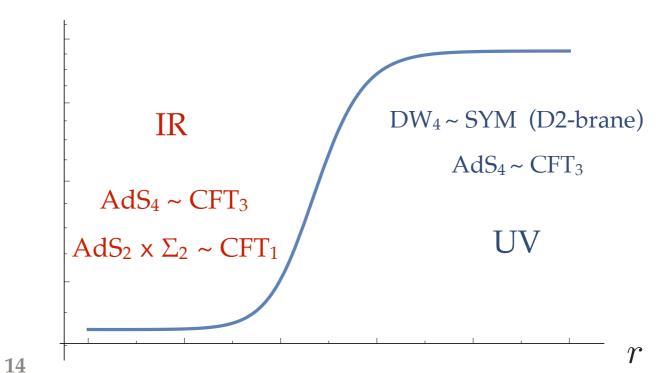
$$e^{2(\psi-U)} \sim r^{\frac{7}{4}}$$

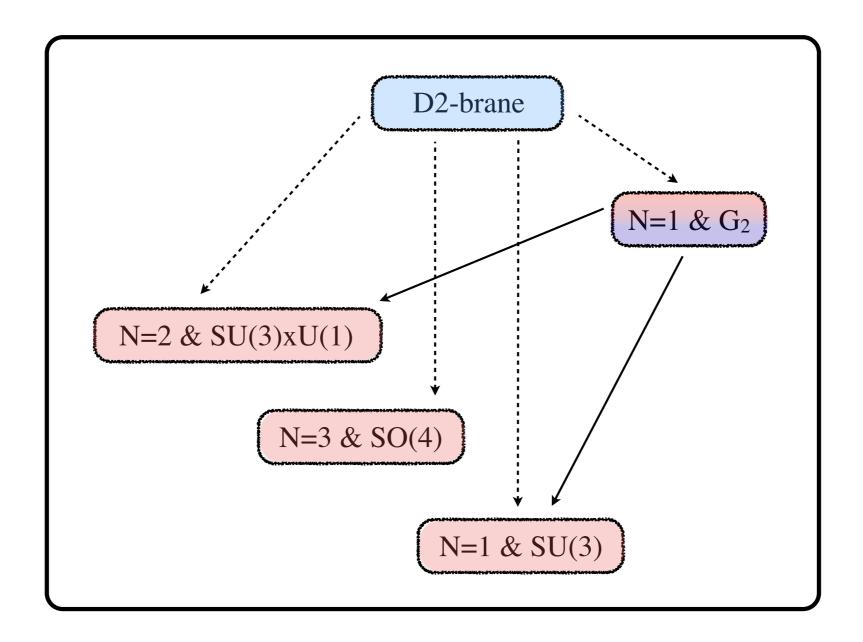
$$e^{\varphi} = e^{\phi} \sim r^{-\frac{1}{4}}$$

 DW_4 domain-wall

• RG flows on D2-brane : ISO(7)-gauged sugra from type IIA on S⁶

AdS₄ in IR: domain-wall AdS₂ x Σ_2 in IR : black hole Benini, Zaffaroni '15 (M-theory) Benini, Hristov, Zaffaroni '15 '16 (M-theory 10⁵ 10 1000 0.001 0.100

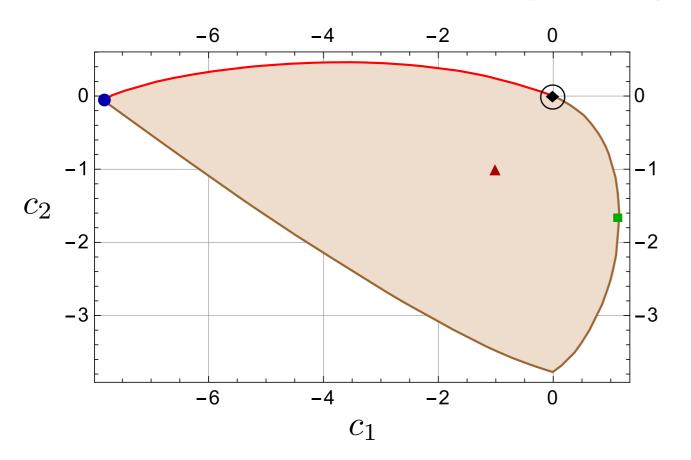




 RG flows from SYM (dotted lines) and between CFT's (solid lines) dual to BPS domain-wall solutions of the dyonic ISO(7)-gauged supergravity

Holographic RG flows: black holes

- N=2 model with 1 vector + 1 hyper ▶ Unique AdS₂ x H² horizon (attractor mec)
- Two irrelevant modes (c_1, c_2) when perturbing around the AdS₂ x H² solution in the IR



 \triangle : AdS₂ x H² to DW₄

 \bullet : AdS₂ x H² to AdS₄

• : $AdS_2 \times H^2$ to Lifshitz (z=2)

 \blacksquare : AdS₂ x H² to conf-Lifshitz

[AG, Tarrío '17]

- RG flows across dimension from SYM or CFT₃ or non-relativistic to CFT₁
- Universal (constant scalars) RG flow (♠) CFT₃ to CFT₁

[Caldarelli, Klemm '98]

• AdS₂ x Σ_g horizons for mIIA on H^(p,q): STU-models with 3 vectors + 1 hyper

Summary

- Dyonic N = 8 supergravity with ISO(7)_c gauging connected to massive IIA reductions on S^6 .
- Any 4D configuration (AdS, DW, BH) is embedded into 10D via the uplifting formulas. Example: AdS₄ \times S⁶ solution of massive IIA based on an N = 2 & U(3) AdS₄ vacuum.
- CFT₃ dual for the N = 2 AdS₄ x S⁶ solution of mIIA based on the D2-brane field theory (SYM-CS).
- Holographic study of RG flows on D2-brane : DW solutions (CFT₃-CFT₃ & SYM₃-CFT₃)

 BH solutions (CFT₃-CFT₁ & SYM₃-CFT₁)
- Generalisation & further tests/conjectures on the duality (semiclassical observables, level-rank duality, ...)

[Fluder, Sparks '15]

[Araujo, Nastase '16] [Araujo, Itsios, Nastase, Ó Colgáin '17]

• Recent progress in the holographic counting of BH microstates

[Benini, Hristov, Zaffaroni '16]

[Azzurli, Bobev, Crichigno, Min, Zaffaroni '17]

[Hosseini, Hristov, Passias '17] [Benini, Khachatryan, Milan '17]

• SO(8)_c theories?

i Gracías!