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General motivation

_ String geometry departs from Riemannian geometry, notably in presence of fluxes

D open strings noncommutativity - Poisson structure - ?-product - Kontsevich ’97 DQ
Chu, Ho ’99; Seiberg, Witten ’99

D closed strings noncommutativity/nonassociativity - (twisted) Poisson - ?-product
Lüst ’10; Blumenhagen, Plauschinn ’10; Mylonas, Schupp, Szabo ’12; & c.

_ Dualities relate different geometries/topologies “non-geometric backgrounds”

_ Manifestly duality-invariant theories - double and exceptional field theories
Hull, Hohm, Zwiebach; Hohm, Samtleben; & c.

_ Evidence that the correct language is algebroid/generalized geometry
Courant; Liu, Weinstein, Xu, Ševera; Roytenberg; Hitchin; Gualtieri; Cavalcanti; Bouwknegt, Hannabuss, Mathai; & c.



Generalized Geometries and Double Field Theory

_ Courant Algebroids and Generalized Geometry double the bundle, e.g. TM ⊕ T ∗M

_ DFT doubles the base,M = M × M̃ — comes with constraints

_ Solving the strong constraint, reduces DFT data to the data of the standard CA

D What is the geometric origin of the DFT data and the strong constraint?
cf. also Deser, Stasheff ’14; Deser, Saemann ’16

_ CAs provide membrane sigma models describe non-geometric backgrounds
Roytenberg ’06

Mylonas, Schupp, Szabo ’12; ACh, Jonke, Lechtenfeld ’15; Bessho, Heller, Ikeda, Watamura ’15

D Is there a “DFT algebroid” that could provide a DFT membrane sigma model?
see talk by Jonke



Basic DFT data
Hohm, Hull, Zwiebach ’10

D Doubled coordinates (all fields depend on both) and derivatives

(x I) = (x i , x̃i ), (∂I) = (∂i , ∂̃
i ) , i = 1, . . . , d , I = 1, . . . , 2d

D O(d , d) structure/(constant) O(d , d)-invariant metric — generalised metric

η = (ηIJ ) =

(
0 1d

1d 0

)
, HIJ =

(
gij − Bik gklBlj Bik gkj

−g ik Bkj g ij

)
.

(or a gen. vielbein HIJ = EA
IEB

JSAB . Siegel ’93; Hohm, Kwak ’10; Aldazabal et al. ’11; Geissbuhler ’11)

D The gauge transformation of H is given by the generalized Lie derivative

δεHIJ = εK∂KHIJ + (∂ IεK − ∂K ε
I)HKJ + (∂JεK − ∂K ε

J )HIK := LεHIJ .

D The identity Lε1Lε2 − Lε2Lε1 = L[[ε1,ε2]] , gives the C-bracket

[[ε1, ε2]]J = εK
1 ∂K ε

J
2 − 1

2 ε
K
1 ∂

Jε2K − (ε1 ↔ ε2) .

D Weak constraint (LMC): ∆· := ∂ I∂I · = 0; Strong constraint: ∂ I∂I(. . . ) = 0.



Definition of a Courant Algebroid
Courant ’90; Liu, Weinstein, Xu ’97

(E π→ M, [·, ·], 〈·, ·〉, ρ : E → TM), such that for A,B,C ∈ Γ(E) and f , g ∈ C∞(M):

1 Modified Jacobi identity (D : C∞(M)→ Γ(E) is defined by 〈Df ,A〉 = 1
2ρ(A)f .)

[[A,B],C] + c.p. = DN (A,B,C) , where N (A,B,C) = 1
3 〈[A,B],C〉+ c.p. ,

2 Modified Leibniz rule

[A, fB] = f [A,B] + (ρ(A)f )B − 〈A,B〉Df ,

3 Compatibility condition

ρ(C)〈A,B〉 = 〈[C,A] +D〈C,A〉,B〉+ 〈[C,B] +D〈C,B〉,A〉 ,

The structures also satisfy the following properties (they follow directly...):

4 Homomorphism ρ[A,B] = [ρ(A), ρ(B)] .

5 “(no need for) strong constraint” ρ ◦ D = 0 ⇔ 〈Df ,Dg〉 = 0 .



Alternative definition of a Courant Algebroid
Ševera ’98

Definition in terms of a bilinear, non-skew operation (Dorfman derivative)

[A,B] = A ◦ B − B ◦ A ,

notably satisfying instead of 1, the Jacobi identity (in Loday-Leibniz form):

A ◦ (B ◦ C) = (A ◦ B) ◦ C + B ◦ (A ◦ C) .

Axioms 2 and 3 do not contain D-terms any longer, instead:

A ◦ fB = f (A ◦ B) + (ρ(A)f )B ,

ρ(C)〈A,B〉 = 〈C ◦ A,B〉+ 〈C ◦ B,A〉 .

The two definitions are equivalent, as proven by Roytenberg ’99



Local expressions for CAs

In a local basis (eI) of Γ(E), I = 1, . . . , 2d , we can write the local form of the operations:

[eI , eJ ] = ηIKηJLTKLMeM ,

〈eI , eJ〉 = 1
2η

IJ ,

ρ(eI)f = ηIJρi
J∂i f ,

Df = DI f eI = ρi
I∂i f eI ,

with (ρi
J ) the anchor components. The axioms and properties of a CA take the form:

ηIJρi
Iρ

j
J = 0 ,

ρi
I∂iρ

j
J − ρi

J∂iρ
j
I − ηKLρi

K TLIJ = 0 ,

4ρi
[L∂iTIJK ] + 3ηMNTM[IJTKL]N = 0 .

In other words, the defn gives: no strong constraint, GG fluxes, GG Bianchi identities.



Brackets for standard and non-standard CAs

The standard CA: E = TM ⊕ T ∗M, ρ = (id, 0), and TIJK = (Hijk , 0, 0, 0) with dH = 0.

[A,B]s = [AV ,BV ] + LAV BF − LBV AF − 1
2 d(ιAV BF − ιBV AF ) + H(AV ,BV )

= Ai∂iB j∂j + (Ai∂iBj + 1
2 Ai∂jBi )dx j − (A↔ B) + AiB jHijk dxk ,

where A = (AV ,AF ) ∈ Γ(E), with AV ∈ Γ(TM) and AF ∈ Γ(T ∗M).

Another simple ex.: ρ = (0,Π]), TIJK = (0, 0, ∂i Π
jk ,R ijk ) with [Π,Π]S = [Π,R]S = 0.

In general, the Courant bracket is given by an expression of the form Liu, Weinstein, Xu

[A,B] = [AV ,BV ] + LAF BV − LBF AV + 1
2 d∗(ιAV BF − ιBV AF )

+ [AF ,BF ] + LAV BF − LBV AF − 1
2 d(ιAV BF − ιBV AF ) + T (A,B) ,

=
(
ρi

J (AJ∂iBK − BJ∂iAK )− 1
2ρ

i
K (AJ∂iBJ − BJ∂iAJ )

)
eK + ALBMTLMK eK .



Pre-Courant algebroids

Vaisman ’04 considered the structure (E π→ M, [·, ·], 〈·, ·〉, ρ : E → TM) without axiom 1.

Relaxation of (modified) Jacobi identity Pre-Courant algebroid

Hansen, Strobl ’09 considered 3D σ-models twisted by a 4-form T , and defined a twisted CA,

A ◦ (B ◦ C) = (A ◦ B) ◦ C + B ◦ (A ◦ C) + ρ∗T (ρ(A), ρ(B), ρ(C)) ,

where ρ∗ : T ∗M → E is the transpose map of ρ. (Plus axioms 2 and 3.)

Liu, Sheng, Xu ’12 showed that pre-CA = 4-form-twisted CA.



The relation of DFT and CAs

Solving the s.c. by elimination of x̃ , i.e. ∂̃ i = 0, takes us from DFT to the standard CA.
more generally, Freidel, Rudolph, Svoboda ’17

However, CAs double the bundle, DFT doubles the space.

What if we take a CA over doubled space?

_ Geometric origin of the DFT operations and the strong constraint?

_ Definition of a DFT algebroid and role of pre-CAs?

Our proposal is instead that the DFT geometry should lie “in between” two (pre-)CAs.



←− “Large” CA over M × M̃

←− Projection

←− DFT structure

←− Strong Constraint

←− “Canonical” CA over M



Doubling and rewriting

In order to relate to DFT, we consider a Courant algebroid over the doubled space.

At least locally, we can work with a 2nd order bundle E = (T ⊕ T ∗)M, overM = T ∗M.

For simplicity start with the standard CA overM. A section A ∈ E is

A := AV + AF = AI∂I + ÃIdXI .

Now introduce the following combinations: (N.B. ηIJ is not the metric of the CA overM)

AI
± = 1

2 (AI ± ηIJ ÃJ ) .

Strategy: rewrite all structural data of E in terms of A±.



Projected sections and bilinear

Starting with sections of the large CA:

A = AI
+e+

I + AI
−e−I , where e±I = ∂I ± ηIJ dXJ ,

a projection to the subbundle L+ spanned by local sections (e+
I )

p+ : E → L+

(AV ,AF ) 7→ A+ := A ,

leads exactly to the form of a DFT O(d , d) vector

A = Ai (dX i + ∂̃ i ) + Ai (dX̃i + ∂i ) .

Projection of the symmetric bilinear of E, leads to the O(d , d) invariant DFT metric:

〈A,B〉E = 1
2ηÎ ĴA

ÎBĴ = ηIJ (AI
+BJ

+ − AI
−BJ
−) 7→ ηIJAIBJ = 〈A,B〉L+ ,

where Î = 1, . . . , 4d , while I = 1, . . . , 2d .



Projected brackets

Rewriting the Courant bracket on E in terms of the ± components:

[A,B]E = ηIK (AK
+∂

IBL
+ − AK

−∂
IBL

+ − 1
2 (AK

+∂
LBI

+ − AK
−∂

LBI
−)− {A↔ B})e+

L +

+ ηIK (AK
+∂

IBL
− − AK

−∂
IBL
− + 1

2 (AK
+∂

LBI
+ − AK

−∂
LBI
−)− {A↔ B})e−L .

The C-bracket of DFT is obtained from the large standard Courant bracket as:

[[A,B]] = p+ ([p+(A),p+(B)]E) .

(L+ is not an involutive subbundle, thus neither a Dirac structure of E.)

Projection of the Dorfman derivative on E to the generalised Lie derivative of DFT:

LAB = p+ (p+(A) ◦ p+(B)) .

Thus, the map p+ sends all CA structures to the corresponding DFT structures.



General anchor and flux formulation of DFT

This works for general CAs overM with anchor ρI
Ĵ = (ρI

J , ρ̃
IJ ), yielding a C-bracket:

[[A,B]]J = (ρ+)L
I

(
AI∂LBJ − 1

2η
IJAK∂LBK − (A↔ B)

)
+ T̂IK

JAIBK ,

in terms of a map ρ+ : L+ → TM with components (ρ+)I
J = ρI

J ± ηJK ρ̃
IK .

Taking a parametrization of the ρ+ components to be ρI
J = (δi

j , β
ij , δi

j + β jk Bki ,Bij ) ,
one can draw a parallel to the flux formulation of DFT. The relevant expressions are:
Geissbuhler, Marques, Nunez, Penas ’13

ηIJρK
Iρ

L
J = ηKL

2ρL
[I∂Lρ

K
J] − ηLMρK

LT̂MIJ = ρL[I∂
KρL

J]

4ρM
[L∂M T̂IJK ] + 3ηMN T̂M[IJ T̂KL]N = ZIJKL .

_ Their resemblance to the local expressions of the CA axioms is very suggestive.

D They can be used to reverse-engineer a geometric definition for a DFT algebroid.



Towards a DFT Algebroid structure

Strategy: Replace [·, ·]E → [[·, ·]], 〈·, ·〉E → 〈·, ·〉L+ and ρ→ ρ+, and also define D+ as

〈A,D+f 〉L+ = 1
2ρ+(A)f ,

amd determine one by one the obstructions to the CA axioms and properties.

1 Modified Jacobi identity (N (A,B,C) = 1
3 〈[[A,B]],C〉L+ + c.p.)  obstructed

[[[[A,B]],C]] + c.p. = D+N (A,B,C) + Z(A,B,C) + SC1(A,B,C) ,

where the last term (which vanishes on the strong constraint) is explicitly given by

SC1(A,B,C)L = − 1
2

(
AI∂JBI∂

JCL − BI∂JAI∂
JCL

)
−

− ρI[J∂Mρ
I
N]

(
AJBN∂MCL − 1

2 CJAK∂MBKη
NL + 1

2 CJBK∂MAKη
NL
)

+

+ c.p.(A,B,C) .

2 Modified Leibniz rule  unobstructed

[[A, fB]] = f [[A,B]] + (ρ+(A)f ) B − 〈A,B〉L+D+f .



Towards a DFT Algebroid structure

3 Compatibility condition  unobstructed

〈[[C,A]] +D+〈C,A〉L+ ,B〉L+ + 〈[[C,B]] +D+〈C,B〉L+ ,A〉L+ = ρ+(C)〈A,B〉L+ .

Up to now, these would point to a pre-CA, but there are two more properties:

4 Homomorphism  obstructed

ρ+[[A,B]] = [ρ+(A), ρ+(B)] + SC2(A,B) ,

where the last term (which vanishes on the strong constraint) is explicitly given by

SC2(A,B) =
(
ρL[I∂

KρL
J]A

IBJ + 1
2

(
AI∂K BI − BI∂K AI

))
∂K .

5 “(no need for) strong constraint”  obstructed

〈D+f ,D+g〉L+ = 〈df ,dg〉L+ = ηIJρK
Iρ

L
J∂K f∂Lg = ∂Lf∂Lg .



A proposal for the DFT Algebroid structure and its relation to CAs

A DFT algebroid is a quadruple (L+, [[·, ·]], 〈·, ·〉L+ , ρ+) satisfying

2 [[A, fB]] = f [[A,B]] + (ρ+(A)f ) B − 〈A,B〉L+D+f ,

3 〈[[C,A]] +D+〈C,A〉L+ ,B〉L+ + 〈[[C,B]] +D+〈C,B〉L+ ,A〉L+ = ρ+(C)〈A,B〉L+ ,

where D+ is defined through 〈A,D+f 〉L+ = 1
2ρ+(A)f .

When the s.c. is imposed, it reduces to a (pre-)CA and ρ+ becomes a homomorphism.



Relation to Roytenberg’s supermanifold description

_ QP2 manifolds (M, ω,Q = {Θ, ·}) (sympl. Lie 2-algebroids) 1−1←→ CAs.
Roytenberg ’02

{Θ,Θ} = 0 .

_ Bruce, Grabowski ’16 proved: Vaisman’s pre-CA 1−1←→ symplectic almost Lie 2-algebroids.

{{Θ,Θ}, f} = 0 .

Interpreted as the strong constraint in Deser, Stasheff ’14

_ Interestingly, Bruce, Grabowski ’16 also define symplectic nearly Lie 2-algebroids, and
show that the Jacobi identity and homomorphism of a CA are obstructed by

{{{{Θ,Θ},A},B},C} and {{{{Θ,Θ}, f},A},B} .

Writing them in local coord’s, exactly identified with SC1(A,B,C) and SC2(A,B)!

 supermanifold description of the DFT algebroid: symplectic nearly Lie 2-algebroid.



Epilogue

Take-home messages
_ The geometric structure of DFT is in between two Courant algebroids

_ A DFT algebroid defined — corresponds to symplectic nearly Lie 2-algebroids

_ There is a pre-CA structure between a DFTA and a CA

Other comments and questions
D Nonassociative R-flux violates strong constraint of DFT

Blumenhagen, Fuchs, Hassler, Lüst, Sun ’13; see also Hohm, Kupriyanov, Lüst, Traube ’17

D Approach is systematic, seems applicable to higher structures
in this context: Grützmann ’10; Ikeda, Uchino ’10; or: Hull ’07; Pacheco, Waldram ’08; & c.
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