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General motivation

String geometry departs from Riemannian geometry, notably in presence of fluxes

4 open strings ~» noncommutativity - Poisson structure - x-product - Kontsevich '97 DQ
Chu, Ho '99; Seiberg, Witten '99

+ closed strings ~~ noncommutativity/nonassociativity - (twisted) Poisson - x-product
List '10; Blumenhagen, Plauschinn '10; Mylonas, Schupp, Szabo '12; & c.

Dualities relate different geometries/topologies ~~ “non-geometric backgrounds”

Manifestly duality-invariant theories - double and exceptional field theories

Hull, Hohm, Zwiebach; Hohm, Samtleben; & c.

Evidence that the correct language is algebroid/generalized geometry

Courant; Liu, Weinstein, Xu, Severa; Roytenberg; Hitchin; Gualtieri; Cavalcanti; Bouwknegt, Hannabuss, Mathai; & c.



Generalized Geometries and Double Field Theory

Courant Algebroids and Generalized Geometry double the bundle, e.g. TM & T*M

DFT doubles the base, M = M x M — comes with constraints

Solving the strong constraint, reduces DFT data to the data of the standard CA

What is the geometric origin of the DFT data and the strong constraint?

cf. also Deser, Stasheff '14; Deser, Saemann '16

CAs provide membrane sigma models ~ describe non-geometric backgrounds
Roytenberg '06
Mylonas, Schupp, Szabo '12; ACh, Jonke, Lechtenfeld '15; Bessho, Heller, lkeda, Watamura '15

Is there a “DFT algebroid” that could provide a DFT membrane sigma model?
see talk by Jonke



Basic DFT data

Hohm, Hull, Zwiebach '10

+ Doubled coordinates (all fields depend on both) and derivatives
<N="%), @)=(8,9), i=1,....d, I=1,...,2d

+ O(d, d) structure/(constant) O(d, d)-invariant metric — generalised metric

_ _ (0 14 _ (9i — Bxg“B; Big"
777(77/J)7(1d 0) 5 ,HIJ*( _g*By g )

(or a gen. vielbein H,y = EAEB 1S p. Siegel '93: Hohm, Kwak '10; Aldazabal et al. '11; Geissbuhler 1)
« The gauge transformation of # is given by the generalized Lie derivative
sHY = FoHY + (0'ex — ke YHN + (87 e — ke YH™ = LMY .
+ Theidentity Lc, L, — Le,Le; = LIe,,¢,] > gives the C-bracket
[e1, 2]’ = e okes — %ef@JEZK —(e1 & e2) .

+ Weak constraint (LMC): A- := §'9;- = 0; Strong constraint: 9'9;(...) = 0.



Definition of a Courant Algebroid
Courant '90; Liu, Weinstein, Xu '97
(ES M,[,,(,-),p: E— TM), such thatfor A, B,C € T(E) and f,g € C>=(M):
@ Modified Jacobi identity (D : C(M) — T'(E) is defined by (Df, A) = 1 p(A)f .)
[[A B],C] +cp.= DN(A,B,C), where N(A,B,C)=1([A B],C)+cp.,

@ Modified Leibniz rule

[A, 1B] = f[A, B] + (p(A))B — (A, B)Df ,
© Compatibility condition

p(C)(A, B) = ([C, A + D(C, A), B) + ([C, B] + D(C, B), A) ,

The structures also satisfy the following properties (they follow directly...):
© Homomorphism  p[A, B] = [p(A), p(B)] .
@ “(no need for) strong constraint” poD =0 <« (Df,Dg)=0.



Alternative definition of a Courant Algebroid

Severa '98

Definition in terms of a bilinear, non-skew operation (Dorfman derivative)
[A,Bl]=AocB—-BoA,
notably satisfying instead of 1, the Jacobi identity (in Loday-Leibniz form):
Ao(BoC)=(AoB)oC+Bo(AcC).
Axioms 2 and 3 do not contain D-terms any longer, instead:

AofB = f(AoB)+ (p(A))B,
p(C)(A,B) = (CoAB)+(CoB,A).

The two definitions are equivalent, as proven by Roytenberg ‘99



Local expressions for CAs

In a local basis (e') of [(E), I = 1,...,2d, we can write the local form of the operations:

€.l = 0" " Tame",
(e', eJ> _ %"7“ 7
p(ef = nYpsof,

Df = Dife =/p9fé,

with (p'y) the anchor components. The axioms and properties of a CA take the form:

nlpr/p/J -0 7

0100y — psdip 1 — "'k Ty = 0,
40110, Tk + 3™ T Tkgy = 0.

In other words, the defn gives: no strong constraint, GG fluxes, GG Bianchi identities.



Brackets for standard and non-standard CAs

The standard CA: E = TM & T*M, p = (id, 0), and Ty = (Hjx, 0,0, 0) with dH = 0.
[ABls = [Av,Bv]+ La,Br — Ls,Ar — 3d(ta, Br — t8,AF) + H(Av, By)
= A9Bo+ (A9B + JA9B)dX — (A« B) + A'B Hydx"
where A = (Ay, Ar) € T(E), with Ay € T(TM) and Ar € [(T*M).

Another simple ex.: p = (0, %), Tux = (0,0, 3;TV%, R™) with [N, N]s = [N, R]s = 0.

In general, the Courant bracket is given by an expression of the form Liu, weinstein, Xu
[A,B] = [Av,Bv]+ La.By — L5 Av + 3d.(ta, BF — t8,AF)

[AF, BF] + La, Br — L5, Ar — 3d(va, BF — t8,AF) + T(A, B) ,

(piJ(AJa,'BK — BJB,'AK) — %piK(AJa,'BJ — BJ&'AJ)) eK + ALBM TLMKeK 5

+



Pre-Courant algebroids

vaisman ‘04 considered the structure (E = M, [-,-], {-,-), p : E — TM) without axiom 1.

Relaxation of (modified) Jacobi identity ~~ Pre-Courant algebroid

Hansen, Strobl'09 considered 3D o-models twisted by a 4-form 7, and defined a twisted CA,
Ao(BoC)=(AoB)oC+Bo(AoC)+p"T(p(A), p(B). p(C)),

where p* : T*M — E is the transpose map of p. (Plus axioms 2 and 3.)

Liu, sheng, Xu 12 showed that pre-CA = 4-form-twisted CA.



The relation of DFT and CAs

Solving the s.c. by elimination of X, i.e. d = 0, takes us from DFT to the standard CA.
more generally, Freidel, Rudolph, Svoboda '17
However, CAs double the bundle, DFT doubles the space.

What if we take a CA over doubled space?

« Geometric origin of the DFT operations and the strong constraint?
« Definition of a DFT algebroid and role of pre-CAs?

Our proposal is instead that the DFT geometry should lie “in between” two (pre-)CAs.



«— “Large” CA over M x M
«— Projection

<— DFT structure
«— Strong Constraint

<— “Canonical” CA over M




Doubling and rewriting

In order to relate to DFT, we consider a Courant algebroid over the doubled space.
At least locally, we can work with a 2" order bundle E = (T & T*)M, over M = T*M.

For simplicity start with the standard CA over M. A section A € E is
A=Ay +Ar=A'9 + AdX.

Now introduce the following combinations: (N.B. 7, is not the metric of the CA over M)

Al = I(A"£9YAy).

Strategy: rewrite all structural data of E in terms of A..



Projected sections and bilinear

Starting with sections of the large CA:
A=Alef +A e, where ef =0 +nudx’,
a projection to the subbundle L spanned by local sections (e}')

P+ E — L+
(Av,AfF) = A=A,

leads exactly to the form of a DFT O(d, d) vector

A=A(dX +8)+ AdX + ) .

Projection of the symmetric bilinear of E, leads to the O(d, d) invariant DFT metric:
(A,B)g = Iy ABY = ny(ALBL — ALBY) — nuA'B = (A B, ,

where T=1,...,4d, while I =1,...,2d.



Projected brackets

Rewriting the Courant bracket on E in terms of the + components:
[ABle = nk(AFO'BL — AKO'BL — 1(AK0'B, — AXO'B) — {A < B))ef +
+ nw(Af9'BE — ANO'BE 4 1(AK0'B, — AK'B!) — {A < B))er .
The C-bracket of DFT is obtained from the large standard Courant bracket as:
[A, B] = p+ ([p+(A), p+(B)]e) -
(L+ is not an involutive subbundle, thus neither a Dirac structure of E.)

Projection of the Dorfman derivative on E to the generalised Lie derivative of DFT:

LaB = ps (p+(A) 0 p+(B)) .

Thus, the map p, sends all CA structures to the corresponding DFT structures.



General anchor and flux formulation of DFT

This works for general CAs over M with anchor o'y = (p'y, 5%), yielding a C-bracket:
[A, Bl = (p+)4 (A’aLBJ — IV AKO B — (A B)) + T’ABC
in terms of a map p, : L, — T M with components (p1)'y = p'y + nkp™.

Taking a parametrization of the p,. components to be p'; = (8';, 87,6/ + By, B;) ,
one can draw a parallel to the flux formulation of DFT. The relevant expressions are:

Geissbuhler, Marques, Nunez, Penas '13

n/JpK’pLJ — T]KL

20 10 oy — ™" L T = pryd” o
4PM[L8M7-IJK] + 3™ ?-M[IJ ?—KL]N = ZukL -
« Their resemblance to the local expressions of the CA axioms is very suggestive.

+ They can be used to reverse-engineer a geometric definition for a DFT algebroid.



Towards a DFT Algebroid structure

Strategy: Replace [,-]1e — [-,-], (-, ) — (-,-), and p — pL, and also define D, as
<A,D+f>L+ = %p+(A)f7

amd determine one by one the obstructions to the CA axioms and properties.

@ Modified Jacobi identity (A (A, B, C) = 1([A, B], C)., +c.p.) ~ obstructed
[lA, B], C] + c.p. = D+N(A, B, C) + Z(A, B, C) + SCy(A, B, C) ,
where the last term (which vanishes on the strong constraint) is explicitly given by
SCi(A,B,C)- = —} (A’aJB,aJcL - B’aJA,aJcL) _
. PI[JaMpIN] (AJBNaMCL . %CJAKaMBKnNL + %CJBKOMAKT)NL) +
+ c.p.(ABC).
@ Modified Leibniz rule ~ unobstructed

[A, 18] = 1A, B] + (p+ (A)f) B — (A, B)y, D, f



Towards a DFT Algebroid structure

© Compatibility condition ~ unobstructed

<|IC7 A]I + D+<07 A>L+7 B>L+ + <|107 B]] + D+<Cv B>L+7A>L+ = p+(C)<A, B>L+ .
Up to now, these would point to a pre-CA, but there are two more properties:

© Homomorphism -~ obstructed
p+[A, Bl = [0+ (A), p+(B)] + SC2(A, B),
where the last term (which vanishes on the strong constraint) is explicitly given by
SCy(A, B) = (pL[/aKpLJ]AIBJ 1 (A’aKB, - B’aKA,)) O .
@ “(no need for) strong constraint” ~ obstructed

(D+f,Dig), = (df,dg)r, = n"p"ip sdkfoLg = 8" fALg .



A proposal for the DFT Algebroid structure and its relation to CAs

A DFT algebroid is a quadruple (L., [-, ‘], (-, )., , p+) satisfying

@ [A. 18] = f[A, B] + (p+(A)f) B— (A, B).. D1,

@ ([C. Al +D.(C.Ax,.B)L, +([C. Bl + D (C, B}, . AL, = p+(C)(A B, .
where D, is defined through (A, D f)., = }p,(A)f.

When the s.c. is imposed, it reduces to a (pre-)CA and p; becomes a homomorphism.



Relation to Roytenberg’s supermanifold description

« QP2 manifolds (901, w, Q = {©, -}) (sympl. Lie 2-algebroids) =L chs.
Roytenberg '02

{9,601 =0.

& Bruce, Grabowski'16 proved: Vaisman'’s pre-CA PN symplectic almost Lie 2-algebroids.
{{e,0},f}=0.

Interpreted as the strong constraint in Deser, Stasheff 14

« Interestingly, Bruce, Grabowski ‘16 also define symplectic nearly Lie 2-algebroids, and
show that the Jacobi identity and homomorphism of a CA are obstructed by

{{{{e,e}, A}, B},C} and {{{{©,0},f} A}, B}.
Writing them in local coord’s, exactly identified with SC; (A, B, C) and SC;(A, B)!

~ supermanifold description of the DFT algebroid: symplectic nearly Lie 2-algebroid.



Epilogue

Take-home messages
#« The geometric structure of DFT is in between two Courant algebroids

« A DFT algebroid defined — corresponds to symplectic nearly Lie 2-algebroids

« There is a pre-CA structure between a DFTA and a CA

Other comments and questions
+ Nonassociative R-flux violates strong constraint of DFT

Blumenhagen, Fuchs, Hassler, List, Sun '13; see also Hohm, Kupriyanov, List, Traube '17

+ Approach is systematic, seems applicable to higher structures

in this context: Gritzmann '10; Ikeda, Uchino '10; or: Hull '07; Pacheco, Waldram '08; & c.
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