The structure of a DFT algebroid

Athanasios Chatzistavrakidis

Rudjer Bošković Institute, Zagreb

In collaboration with Larisa Jonke, Fech Scen Khoo, Richard J. Szabo

String Dualities and Geometry @ Centro Atomico Bariloche

15-19 January 2018 za znanost

General motivation

*String geometry departs from Riemannian geometry, notably in presence of fluxes

* open strings \rightsquigarrow noncommutativity - Poisson structure - \star-product - Kontsevich '97 DQ Chu, Ho '99; Seiberg, Witten '99
* closed strings \rightsquigarrow noncommutativity/nonassociativity - (twisted) Poisson - - product Lüst '10; Blumenhagen, Plauschinn '10; Mylonas, Schupp, Szabo '12; \& c.
* Dualities relate different geometries/topologies \rightsquigarrow "non-geometric backgrounds"
* Manifestly duality-invariant theories - double and exceptional field theories Hull, Hohm, Zwiebach; Hohm, Samtleben; \& c.
* Evidence that the correct language is algebroid/generalized geometry

Courant; Liu, Weinstein, Xu, Ševera; Roytenberg; Hitchin; Gualtieri; Cavalcanti; Bouwknegt, Hannabuss, Mathai; \& c.

Generalized Geometries and Double Field Theory

* Courant Algebroids and Generalized Geometry double the bundle, e.g. $T M \oplus T^{*} M$
* DFT doubles the base, $\mathcal{M}=M \times \widetilde{M}$ - comes with constraints
* Solving the strong constraint, reduces DFT data to the data of the standard CA
* What is the geometric origin of the DFT data and the strong constraint?
cf. also Deser, Stasheff '14; Deser, Saemann '16
» CAs provide membrane sigma models \rightsquigarrow describe non-geometric backgrounds Roytenberg '06

Mylonas, Schupp, Szabo '12; ACh, Jonke, Lechtenfeld '15; Bessho, Heller, Ikeda, Watamura '15

* Is there a "DFT algebroid" that could provide a DFT membrane sigma model? see talk by Jonke

Basic DFT data

* Doubled coordinates (all fields depend on both) and derivatives

$$
\left(x^{\prime}\right)=\left(x^{i}, \widetilde{x}_{i}\right), \quad\left(\partial_{l}\right)=\left(\partial_{i}, \widetilde{\partial}^{i}\right), \quad i=1, \ldots, d, \quad I=1, \ldots, 2 d
$$

* $O(d, d)$ structure/(constant) $O(d, d)$-invariant metric - generalised metric

$$
\eta=\left(\eta_{I J}\right)=\left(\begin{array}{cc}
0 & 1_{d} \\
1_{d} & 0
\end{array}\right), \quad \mathcal{H}_{I J}=\left(\begin{array}{cc}
g_{i j}-B_{i j} g^{k l} B_{l j} & B_{i k} g^{k j} \\
-g^{k i} B_{k j} & g^{i j}
\end{array}\right) .
$$

(or a gen. vielbein $\mathcal{H}_{I J}=\mathcal{E}^{A} \mathcal{E}^{\mathcal{B}}{ }_{J} S_{A B}$. Siegel ' 93 ; Hohm, Kwak' '00; Aldazabal et al. '11; Geissbuhler' '11)

* The gauge transformation of \mathcal{H} is given by the generalized Lie derivative

$$
\delta_{\epsilon} \mathcal{H}^{\prime J}=\epsilon^{K} \partial_{K} \mathcal{H}^{\prime J}+\left(\partial^{\prime} \epsilon_{K}-\partial_{K} \epsilon^{\prime}\right) \mathcal{H}^{K J}+\left(\partial^{J} \epsilon_{K}-\partial_{K} \epsilon^{J}\right) \mathcal{H}^{I K}:=\mathcal{L}_{\epsilon} \mathcal{H}^{\prime J} .
$$

* The identity $\mathcal{L}_{\epsilon_{1}} \mathcal{L}_{\epsilon_{2}}-\mathcal{L}_{\epsilon_{2}} \mathcal{L}_{\epsilon_{1}}=\mathcal{L}_{\left[\epsilon_{1}, \epsilon_{2}\right]}$, gives the C-bracket

$$
\llbracket \epsilon_{1}, \epsilon_{2} \rrbracket^{J}=\epsilon_{1}^{K} \partial_{K} \epsilon_{2}^{J}-\frac{1}{2} \epsilon_{1}^{K} \partial^{J} \epsilon_{2 K}-\left(\epsilon_{1} \leftrightarrow \epsilon_{2}\right) .
$$

* Weak constraint (LMC): $\Delta \cdot:=\partial^{\prime} \partial_{l}=0 ;$ Strong constraint: $\partial^{\prime} \partial_{l}(\ldots)=0$.

Definition of a Courant Algebroid

$(E \xrightarrow{\pi} M,[\cdot, \cdot],\langle\cdot, \cdot\rangle, \rho: E \rightarrow T M)$, such that for $A, B, C \in \Gamma(E)$ and $f, g \in C^{\infty}(M)$:
(1) Modified Jacobi identity ($\mathcal{D}: C^{\infty}(M) \rightarrow \Gamma(E)$ is defined by $\langle\mathcal{D} f, A\rangle=\frac{1}{2} \rho(A) f$.)

$$
[[A, B], C]+\text { c.p. }=\mathcal{D N}(A, B, C), \quad \text { where } \quad \mathcal{N}(A, B, C)=\frac{1}{3}\langle[A, B], C\rangle+\text { c.p. },
$$

(2) Modified Leibniz rule

$$
[A, f B]=f[A, B]+(\rho(A) f) B-\langle A, B\rangle \mathcal{D} f,
$$

(3) Compatibility condition

$$
\rho(C)\langle A, B\rangle=\langle[C, A]+\mathcal{D}\langle C, A\rangle, B\rangle+\langle[C, B]+\mathcal{D}\langle C, B\rangle, A\rangle,
$$

The structures also satisfy the following properties (they follow directly...):
(9) Homomorphism $\rho[A, B]=[\rho(A), \rho(B)]$.
(大 "(no need for) strong constraint" $\quad \rho \circ \mathcal{D}=0 \quad \Leftrightarrow \quad\langle\mathcal{D} f, \mathcal{D} g\rangle=0$.

Alternative definition of a Courant Algebroid

Definition in terms of a bilinear, non-skew operation (Dorfman derivative)

$$
[A, B]=A \circ B-B \circ A,
$$

notably satisfying instead of 1 , the Jacobi identity (in Loday-Leibniz form):

$$
A \circ(B \circ C)=(A \circ B) \circ C+B \circ(A \circ C) .
$$

Axioms 2 and 3 do not contain \mathcal{D}-terms any longer, instead:

$$
\begin{aligned}
A \circ f B & =f(A \circ B)+(\rho(A) f) B, \\
\rho(C)\langle A, B\rangle & =\langle C \circ A, B\rangle+\langle C \circ B, A\rangle .
\end{aligned}
$$

The two definitions are equivalent, as proven by Roytenberg '99

Local expressions for CAs

In a local basis $\left(e^{\prime}\right)$ of $\Gamma(E), I=1, \ldots, 2 d$, we can write the local form of the operations:

$$
\begin{aligned}
{\left[e^{\prime}, e^{J}\right] } & =\eta^{I K} \eta^{J L} T_{K L M} e^{M}, \\
\left\langle e^{\prime}, e^{J}\right\rangle & =\frac{1}{2} \eta^{I J}, \\
\rho\left(e^{\prime}\right) f & =\eta^{\prime J} \rho_{J}^{\prime} \partial_{i} f, \\
\mathcal{D} f & =\mathcal{D}_{I} f e^{\prime}=\rho_{l}{ }_{l} \partial_{i} f e^{\prime},
\end{aligned}
$$

with $\left(\rho^{i}{ }_{\jmath}\right)$ the anchor components. The axioms and properties of a CA take the form:

$$
\begin{aligned}
& \eta^{I J} \rho^{i}{ }_{1} \rho^{j}{ }_{J}=0, \\
& \rho^{\prime}, \partial_{i} \rho^{\prime}-\rho^{i}{ }_{\partial} \partial_{i} \rho^{j}{ }_{I}-\eta^{K L} \rho^{i}{ }_{K} T_{L I J}=0, \\
& 4 \rho^{i}{ }_{[L} \partial_{i} T_{I J K]}+3 \eta^{M N} T_{M[I J} T_{K L] N}=0 .
\end{aligned}
$$

In other words, the defn gives: no strong constraint, GG fluxes, GG Bianchi identities.

Brackets for standard and non-standard CAs

The standard CA: $E=T M \oplus T^{*} M, \rho=(\mathrm{id}, 0)$, and $T_{I J K}=\left(H_{j j k}, 0,0,0\right)$ with $\mathrm{d} H=0$.

$$
\begin{aligned}
{[A, B]_{s} } & =\left[A_{V}, B_{V}\right]+\mathcal{L}_{A_{V}} B_{F}-\mathcal{L}_{B_{V}} A_{F}-\frac{1}{2} \mathrm{~d}\left(\iota_{A_{V}} B_{F}-\iota_{B_{V}} A_{F}\right)+H\left(A_{V}, B_{V}\right) \\
& =A^{i} \partial_{i} B^{j} \partial_{j}+\left(A^{i} \partial_{i} B_{j}+\frac{1}{2} A^{i} \partial_{j} B_{i}\right) \mathrm{d} x^{j}-(A \leftrightarrow B)+A^{i} B^{j} H_{j k \mathrm{k}} \mathrm{~d} x^{k},
\end{aligned}
$$

where $A=\left(A_{V}, A_{F}\right) \in \Gamma(E)$, with $A_{V} \in \Gamma(T M)$ and $A_{F} \in \Gamma\left(T^{*} M\right)$.

Another simple ex.: $\rho=\left(0, \Pi^{\sharp}\right), T_{I J K}=\left(0,0, \partial_{i} \Pi^{j k}, R^{i k}\right)$ with $[\Pi, \Pi]_{\mathrm{S}}=[\Pi, R]_{\mathrm{S}}=0$.

In general, the Courant bracket is given by an expression of the form Liu, Weinstein, xu

$$
\begin{aligned}
{[A, B] } & =\left[A_{V}, B_{V}\right]+\mathcal{L}_{A_{F}} B_{V}-\mathcal{L}_{B_{F}} A_{V}+\frac{1}{2} \mathrm{~d}_{*}\left(\iota_{A_{V}} B_{F}-\iota_{B_{V}} A_{F}\right) \\
& +\left[A_{F}, B_{F}\right]+\mathcal{L}_{A_{V}} B_{F}-\mathcal{L}_{B_{V}} A_{F}-\frac{1}{2} \mathrm{~d}\left(\iota_{A_{V}} B_{F}-\iota_{B_{V}} A_{F}\right)+T(A, B), \\
& =\left(\rho^{i}\left(A^{J} \partial_{i} B_{K}-B^{J} \partial_{i} A_{K}\right)-\frac{1}{2} \rho^{i}{ }_{K}\left(A^{J} \partial_{i} B_{J}-B^{J} \partial_{i} A_{J}\right)\right) e^{K}+A^{L} B^{M} T_{L M K} e^{K} .
\end{aligned}
$$

Pre-Courant algebroids

Vaisman '04 considered the structure $(E \xrightarrow{\pi} M,[\cdot, \cdot],\langle\cdot, \cdot\rangle, \rho: E \rightarrow T M)$ without axiom 1.
Relaxation of (modified) Jacobi identity \rightsquigarrow Pre-Courant algebroid

Hansen, Strobl ${ }^{\circ} 09$ considered 3D σ-models twisted by a 4-form \mathcal{T}, and defined a twisted CA,

$$
A \circ(B \circ C)=(A \circ B) \circ C+B \circ(A \circ C)+\rho^{*} \mathcal{T}(\rho(A), \rho(B), \rho(C))
$$

where $\rho^{*}: T^{*} M \rightarrow E$ is the transpose map of ρ. (Plus axioms 2 and 3.)

Liu, Sheng, Xu'12 showed that pre-CA $=4$-form-twisted CA.

The relation of DFT and CAs

Solving the s.c. by elimination of \widetilde{x}, i.e. $\widetilde{\partial}^{i}=0$, takes us from DFT to the standard CA. more generally, Freidel, Rudolph, Svoboda '17

However, CAs double the bundle, DFT doubles the space.
What if we take a CA over doubled space?

* Geometric origin of the DFT operations and the strong constraint?
* Definition of a DFT algebroid and role of pre-CAs?

Our proposal is instead that the DFT geometry should lie "in between" two (pre-)CAs.

\longleftarrow "Large" CA over $M \times \widetilde{M}$
\longleftarrow Projection
\longleftarrow DFT structure
\longleftarrow Strong Constraint
\longleftarrow "Canonical" CA over M

Doubling and rewriting

In order to relate to DFT, we consider a Courant algebroid over the doubled space.
At least locally, we can work with a $2^{\text {nd }}$ order bundle $\mathbb{E}=\left(T \oplus T^{*}\right) \mathcal{M}$, over $\mathcal{M}=T^{*} M$.
For simplicity start with the standard CA over \mathcal{M}. A section $\mathbb{A} \in \mathbb{E}$ is

$$
\mathbb{A}:=\mathbb{A}_{V}+\mathbb{A}_{F}=\mathbb{A}^{\prime} \partial_{l}+\tilde{\mathbb{A}} / \mathrm{d} \mathbb{X}^{\prime} .
$$

Now introduce the following combinations: (N.B. $\eta_{J /}$ is not the metric of the CA over \mathcal{M})

$$
\mathbb{A}_{ \pm}^{\prime}=\frac{1}{2}\left(\mathbb{A}^{\prime} \pm \eta^{\prime \nu} \tilde{\mathbb{A}}_{J}\right) .
$$

Strategy: rewrite all structural data of \mathbb{E} in terms of $\mathbb{A}_{ \pm}$.

Projected sections and bilinear

Starting with sections of the large CA:

$$
\mathbb{A}=\mathbb{A}_{+}^{\prime} e_{l}^{+}+\mathbb{A}_{-}^{\prime} e_{l}^{-}, \quad \text { where } \quad e_{l}^{ \pm}=\partial_{l} \pm \eta_{I J} d \mathbb{X}^{J}
$$

a projection to the subbundle L_{+}spanned by local sections $\left(e_{I}^{+}\right)$

$$
\begin{aligned}
\mathrm{p}_{+}: \mathbb{E} & \rightarrow L_{+} \\
\left(\mathbb{A}_{V}, \mathbb{A}_{F}\right) & \mapsto \mathbb{A}_{+}:=A,
\end{aligned}
$$

leads exactly to the form of a DFT $O(d, d)$ vector

$$
A=A_{i}\left(\mathrm{~d} X^{i}+\tilde{\partial}^{i}\right)+A^{i}\left(\mathrm{~d} \widetilde{X}_{i}+\partial_{i}\right)
$$

Projection of the symmetric bilinear of \mathbb{E}, leads to the $O(d, d)$ invariant DFT metric:

$$
\langle\mathbb{A}, \mathbb{B}\rangle_{\mathbb{E}}=\frac{1}{2} \eta_{i \hat{J}} \mathbb{A}^{\hat{\prime}} \mathbb{B}^{\hat{J}}=\eta_{I J}\left(\mathbb{A}_{+}^{\prime} \mathbb{B}_{+}^{J}-\mathbb{A}_{-}^{\prime} \mathbb{B}_{-}^{J}\right) \quad \mapsto \quad \eta_{I J} A^{\prime} B^{J}=\langle A, B\rangle_{L_{+}}
$$

where $\hat{I}=1, \ldots, 4 d$, while $I=1, \ldots, 2 d$.

Projected brackets

Rewriting the Courant bracket on \mathbb{E} in terms of the \pm components:

$$
\begin{aligned}
{[\mathbb{A}, \mathbb{B}]_{E} } & =\eta_{I K}\left(\mathbb{A}_{+}^{K} \partial^{\prime} \mathbb{B}_{+}^{L}-\mathbb{A}_{-}^{K} \partial^{\prime} \mathbb{B}_{+}^{L}-\frac{1}{2}\left(\mathbb{A}_{+}^{K} \partial^{L} \mathbb{B}_{+}^{\prime}-\mathbb{A}_{-}^{K} \partial^{L} \mathbb{B}_{-}^{\prime}\right)-\{\mathbb{A} \leftrightarrow \mathbb{B}\}\right) e_{L}^{+}+ \\
& +\eta_{I K}\left(\mathbb{A}_{+}^{K} \partial^{\prime} \mathbb{B}_{-}^{L}-\mathbb{A}_{-}^{K} \partial^{\prime} \mathbb{B}_{-}^{L}+\frac{1}{2}\left(\mathbb{A}_{+}^{K} \partial^{L} \mathbb{B}_{+}^{\prime}-\mathbb{A}_{-}^{K} \partial^{L} \mathbb{B}_{-}^{\prime}\right)-\{\mathbb{A} \leftrightarrow \mathbb{B}\}\right) e_{L}^{-} .
\end{aligned}
$$

The C-bracket of DFT is obtained from the large standard Courant bracket as:

$$
\llbracket A, B \rrbracket=\mathrm{p}_{+}\left(\left[\mathrm{p}_{+}(\mathbb{A}), \mathrm{p}_{+}(\mathbb{B})\right]_{\mathbb{E}}\right) .
$$

(L_{+}is not an involutive subbundle, thus neither a Dirac structure of \mathbb{E}.)
Projection of the Dorfman derivative on \mathbb{E} to the generalised Lie derivative of DFT:

$$
\mathcal{L}_{A} B=\mathrm{p}_{+}\left(\mathrm{p}_{+}(\mathbb{A}) \circ \mathrm{p}_{+}(\mathbb{B})\right) .
$$

Thus, the map p_{+}sends all CA structures to the corresponding DFT structures.

General anchor and flux formulation of DFT

This works for general CAs over \mathcal{M} with anchor $\rho^{\prime}{ }_{\jmath}=\left(\rho^{\prime} J, \tilde{\rho}^{I J}\right)$, yielding a C-bracket:

$$
\llbracket A, B \rrbracket^{J}=\left(\rho_{+}\right)^{L},\left(A^{\prime} \partial_{L} B^{J}-\frac{1}{2} \eta^{\prime J} A^{K} \partial_{L} B_{K}-(A \leftrightarrow B)\right)+\hat{T}_{I K}{ }^{J} A^{\prime} B^{K},
$$

in terms of a map $\rho_{+}: L_{+} \rightarrow T \mathcal{M}$ with components $\left(\rho_{+}\right)^{\prime}{ }_{\jmath}=\rho^{\prime}{ }_{\jmath} \pm \eta_{J \kappa} \widetilde{\rho}^{K}$.
Taking a parametrization of the ρ_{+}components to be $\rho^{\prime}{ }^{\prime}=\left(\delta^{i}{ }_{j}, \beta^{i j}, \delta_{i}^{j}+\beta^{j k} B_{k i}, B_{i j}\right)$, one can draw a parallel to the flux formulation of DFT. The relevant expressions are:
Geissbuhler, Marques, Nunez, Penas '13

$$
\begin{aligned}
& \eta^{I J} \rho^{K}{ }_{I} \rho_{J}^{L}=\eta^{K L} \\
& 2 \rho^{L}{ }_{[I} \partial_{\underline{L}} \rho^{K}{ }_{J]}-\eta^{L M} \rho^{K}{ }_{L} \hat{T}_{M I J}=\rho_{L[I} \partial^{K} \rho^{L}{ }_{J]} \\
& 4 \rho^{M}{ }_{[L} \partial_{\underline{M}} \hat{T}_{I J K]}+3 \eta^{M N} \hat{T}_{M[I J} \hat{T}_{K L] N}=\mathcal{Z}_{I J K L} .
\end{aligned}
$$

* Their resemblance to the local expressions of the CA axioms is very suggestive.
* They can be used to reverse-engineer a geometric definition for a DFT algebroid.

Towards a DFT Algebroid structure

Strategy: Replace $[\cdot, \cdot]_{E} \rightarrow \llbracket \cdot, \cdot \rrbracket,\langle\cdot, \cdot\rangle_{E} \rightarrow\langle\cdot, \cdot\rangle_{L_{+}}$and $\rho \rightarrow \rho_{+}$, and also define \mathcal{D}_{+}as

$$
\left\langle A, \mathcal{D}_{+} f\right\rangle_{L_{+}}=\frac{1}{2} \rho_{+}(A) f,
$$

amd determine one by one the obstructions to the CA axioms and properties.
(1) Modified Jacobi identity $\left(\mathcal{N}(A, B, C)=\frac{1}{3}\langle\llbracket A, B \rrbracket, C\rangle_{L_{+}}+\right.$c.p. $) \rightsquigarrow$ obstructed

$$
\llbracket \llbracket A, B \rrbracket, C \rrbracket+\text { c.p. }=\mathcal{D}_{+} \mathcal{N}(A, B, C)+\mathcal{Z}(A, B, C)+S C_{1}(A, B, C),
$$

where the last term (which vanishes on the strong constraint) is explicitly given by

$$
\begin{aligned}
& S C_{1}(A, B, C)^{L}=-\frac{1}{2}\left(A^{\prime} \partial_{J} B_{l} \partial^{J} C^{L}-B^{\prime} \partial_{J} A_{l} \partial^{J} C^{L}\right)- \\
- & \rho_{I J J} \partial_{M} \rho^{\prime}{ }_{N]}\left(A^{J} B^{N} \partial^{M} C^{L}-\frac{1}{2} C^{J} A^{K} \partial^{M} B_{K} \eta^{N L}+\frac{1}{2} C^{J} B^{K} \partial^{M} A_{K} \eta^{N L}\right)+ \\
+ & \text { c.p. }(A, B, C) .
\end{aligned}
$$

(2) Modified Leibniz rule \rightsquigarrow unobstructed

$$
\llbracket A, f B \rrbracket=f \llbracket A, B \rrbracket+\left(\rho_{+}(A) f\right) B-\langle A, B\rangle_{L_{+}} \mathcal{D}_{+} f .
$$

Towards a DFT Algebroid structure

(3) Compatibility condition \rightsquigarrow unobstructed

$$
\left\langle\llbracket C, A \rrbracket+\mathcal{D}_{+}\langle C, A\rangle_{L_{+}}, B\right\rangle_{L_{+}}+\left\langle\llbracket C, B \rrbracket+\mathcal{D}_{+}\langle C, B\rangle_{L_{+}}, A\right\rangle_{L_{+}}=\rho_{+}(C)\langle A, B\rangle_{L_{+}} .
$$

Up to now, these would point to a pre-CA, but there are two more properties:
(c) Homomorphism \rightsquigarrow obstructed

$$
\rho_{+} \llbracket A, B \rrbracket=\left[\rho_{+}(A), \rho_{+}(B)\right]+S C_{2}(A, B),
$$

where the last term (which vanishes on the strong constraint) is explicitly given by

$$
S C_{2}(A, B)=\left(\rho_{L l \mid} \partial^{K} \rho^{L}{ }_{\jmath} A^{\prime} B^{J}+\frac{1}{2}\left(A^{\prime} \partial^{K} B_{l}-B^{\prime} \partial^{K} A_{l}\right)\right) \partial_{K} .
$$

("(no need for) strong constraint" \rightsquigarrow obstructed

$$
\left\langle\mathcal{D}_{+} f, \mathcal{D}_{+} g\right\rangle_{L_{+}}=\langle\mathrm{d} f, \mathrm{~d} g\rangle_{L_{+}}=\eta^{\prime J} \rho^{K} / \rho^{L}{ }_{\nu} \partial_{K} f \partial_{\llcorner } g=\partial^{L} f \partial_{L} g .
$$

A proposal for the DFT Algebroid structure and its relation to CAs

A DFT algebroid is a quadruple $\left.\left(L_{+}, \mathbb{[} \cdot, \cdot \rrbracket,\langle\cdot, \cdot\rangle\right\rangle_{L_{+}}, \rho_{+}\right)$satisfying
(2) $\llbracket A, f B \rrbracket=f \llbracket A, B \rrbracket+\left(\rho_{+}(A) f\right) B-\langle A, B\rangle_{L_{+}} \mathcal{D}_{+} f$,
(0) $\left\langle\llbracket C, A \rrbracket+\mathcal{D}_{+}\langle C, A\rangle_{L_{+}}, B\right\rangle_{L_{+}}+\left\langle\llbracket C, B \rrbracket+\mathcal{D}_{+}\langle C, B\rangle_{L_{+}}, A\right\rangle_{L_{+}}=\rho_{+}(C)\langle A, B\rangle_{L_{+}}$, where \mathcal{D}_{+}is defined through $\left\langle A, \mathcal{D}_{+} f\right\rangle_{L_{+}}=\frac{1}{2} \rho_{+}(A) f$.

When the s.c. is imposed, it reduces to a (pre-)CA and ρ_{+}becomes a homomorphism.

Relation to Roytenberg's supermanifold description

* QP2 manifolds $(\mathfrak{M}, \omega, Q=\{\Theta, \cdot\})$ (sympl. Lie 2-algebroids) $\stackrel{1-1}{\longleftrightarrow}$ CAs.

Roytenberg '02

$$
\{\Theta, \Theta\}=0 .
$$

* Bruce, Grabowski '16 proved: Vaisman's pre-CA $\stackrel{1-1}{\longleftrightarrow}$ symplectic almost Lie 2-algebroids.

$$
\{\{\Theta, \Theta\}, f\}=0 .
$$

Interpreted as the strong constraint in Deser, Stasheff ' 14

* Interestingly, Bruce, Grabowski '16 also define symplectic nearly Lie 2-algebroids, and show that the Jacobi identity and homomorphism of a CA are obstructed by

$$
\{\{\{\{\Theta, \Theta\}, A\}, B\}, C\} \quad \text { and } \quad\{\{\{\{\Theta, \Theta\}, f\}, A\}, B\} .
$$

Writing them in local coord's, exactly identified with $S C_{1}(A, B, C)$ and $S C_{2}(A, B)$!
\rightsquigarrow supermanifold description of the DFT algebroid: symplectic nearly Lie 2-algebroid.

Epilogue

Take-home messages

* The geometric structure of DFT is in between two Courant algebroids
* A DFT algebroid defined - corresponds to symplectic nearly Lie 2-algebroids
* There is a pre-CA structure between a DFTA and a CA

Other comments and questions

* Nonassociative R-flux violates strong constraint of DFT

Blumenhagen, Fuchs, Hassler, Lüst, Sun '13; see also Hohm, Kupriyanov, Lüst, Traube '17

* Approach is systematic, seems applicable to higher structures
in this context: Grützmann '10; Ikeda, Uchino '10; or: Hull '07; Pacheco, Waldram '08; \& c.

