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Focus on N=8 Supergravity 
with NEW results on

Finiteness (?)

AdS/CMT applications

dS vacua in N>1                                           
(and eventually string theory)

New Minkowski 
vacua

Swampland

Twisted 
tori

Flux compact.

Stringy 
reductions

Sugra

String Theory

And, of course, the landscape…



The N=8 Landscape 
The problem is well defined for maximally supersymmetric 
theories:

912 possible fluxes in total

fluxes-gaugings map fully worked out

full classification of gaugings and vacua in progress 
with new techniques
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Which gauge groups and 
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de Sitter?
distribution of c.c.?



Our progress:

i) Structure of the theory
a. New classes of gaugings

b. Full classification of parameter space 

c. New susy-breaking patterns

d. 1-loop finiteness

G.D., Inverso, 
Trigiante

G.D., Zwirner

Catino, G.D.,  
Inverso, Zwirner

G.D., Inverso, 
Marrani



Our progress:

ii) Structure of the Landscape
a. Many new AdS, Minkowski and dS 

vacua

b. Web of connected Minkowski vacua!

c. New uplifts to M-theory

G.D., Inverso

Catino, G.D.,  
Inverso, Zwirner

G.D., Baron
G.D., inverso,Spezzati



The Moduli 
Space of 

Minkowski Vacua



Minkowski Vacua

Cremmer–Scherk–Schwarz from the d=4 perspective: 

gaugingU(1)n T 27

(
[X0, XI ] = QI

J XJ

[XI , XJ ] = 0

Minkowski vacua with N=0,2,4,6

Gravitino masses 2 x Mi

Overall sliding scale, but Mi/Mj  fixed

When M1 = M2 = M3 = M4 : CSO(2, 6)



Minkowski Vacua

N = 0

    Mass spectrum in
                              irrepsesSU(4)⇥ U(1)

First Minkowski vacuum from a semisimple group

Moduli space: SU(1, 1)

U(1)

�3
xi, ei

Vacuum stability 
depends on hxii, heii

SO
⇤(8) ' SO(6, 2)c=1 ! SU(4)⇥ U(1)

G.D., Inverso
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Minkowski Vacua

N = 0

    Mass spectrum in
                              irrepsesSU(4)⇥ U(1)

First Minkowski vacuum from a semisimple group

Moduli space: SU(1, 1)

U(1)

�3
xi, ei

Vacuum stability 
depends on hxii, heii

Moduli

SO
⇤(8) ' SO(6, 2)c=1 ! SU(4)⇥ U(1)

G.D., Inverso



SUSY breaking scale depends on 

Tuning the moduli we can send 

Stable regions of finite volume

We reproduce and generalize all CSS susy breaking and mass 
patterns  

Minkowski Vacua

M1 =
e2e3
e1

f(xi) , M2 =
e1e3
e2

f(xi) ,

M3 =
e1e2
e3

f(xi) , M4 =
1

e1e2e3
f(xi) .

f(xi) =

s
Y

i

1 + x4
i

8xi

Mi ! 0

hxii, heii

Catino, G.D.,  
Inverso, Zwirner



Minkowski Vacua

SO
⇤(8) N = 0

N = 2CSO
⇤(6, 2)

CSO
⇤(2, 6)

CSS

CSO
⇤(4, 4) U(1)2 ⇥N20

SO
⇤(4)⇥ U(1)⇥N

20

N = 6

N = 4

SO(4)⇥ SO(2, 2)

⇥T 16x1

e2

e�
1

2
,e

1
,e

3

Catino, G.D.,  
Inverso, Zwirner



Minkowski Vacua

Moduli space fully connected

Can we get odd N?

From kinematics:

N=7=N=8

N=5 forbidden

N=3 allowed but restricted

N=1 possible

Do we have examples? 



Flatfolds



Flatfolds

SO
⇤(8) N = 0
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⇤(4, 4) U(1)2 ⇥N20

SO
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20

N = 6

N = 4
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⇥T 16x1

e2

e�
1

2
,e
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Catino, G.D.,  
Inverso, Zwirner

LIFTED BY 
Inverso-Samtleben-Trigiante 

Baguet-Pope-samtleben 
Malek-Samtleben



Flatfolds

The uplift uses the internal manifold S
3 ⇥H

2,2

SO(4)

SO(3)
⇥ SO(2, 2)

SO(2, 1)

Trick: describe it as a generalized SS reduction in DFT

keeps all vectors unlike group manifold reductions

explicit uplift also of the moduli as geometric 
deformations

Inverso-Samtleben-Trigiante 
Baguet-Pope-samtleben 

Malek-Samtleben



Flatfolds

SII =

Z
d
10
x
p
�g e

�2�

✓
R+ 4(@�)2 � 1

12
HMNPH

MNP

◆

HMN = UM
A(y)MAB(x)UN

B(y)

MAB(x) 2
SO(6, 6)

SO(6)⇥ SO(6)
AM

µ = U�1
A
M (y)AA

µ (x)

e� = ⇢2(y)e'(x)gµ⌫ = e4�'(x)gµ⌫(x)

Focus for simplicity on DFT and type II uplift

In the generalized SS truncation to 4d, the metric, vectors, 
dilaton contain info on 4d supergravity fields and on the internal 
space (via twist matrices U)

Aldazabal-Baron-Marqués-Núñez 
Geissbühler



Flatfolds

JD[AU
�1
B

MU�1
C]

N@MUN
D = fABC

⇢�1@M⇢ = ��U�1
A

N@NUM
A

The Ansatz is consistent iff the twist matrices satisfy

where J is the O(d,d) metric and f are structure constants

If U depends only on the physical coordinates then we have 
a type II background

On                        one can write down U as a function of the 
Killing vectors

S
3 ⇥H

2,2
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ÛM
A(y) = gM

P JP
N UN

B(y0)LB
A(h�4i)

We follow the deformation to the boundary of the moduli 
space

Vev sent to boundary

Jacobian of the coordinate 
change



Flatfolds

ÛM
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constant



Flatfolds

ÛM
A(y) = gM

P JP
N UN

B(y0)LB
A(h�4i)

We follow the deformation to the boundary of the moduli 
space

hHi(y) = UM
A(y)hMABiUN

B(y)

We then plug the result back in the Ansatz to get the new 
geometry

We finally look for appropriate boundary conditions to 
make it compact



Flatfolds

The results are either known solvmanifolds 

Or simply flat space with non trivial patching via duality

Flat-folds

Graña-Minasian-
Petrini-Tomasiello 

Andriot



Flatfolds

M7 =
U(1)n R24

R18

e1 = dy1 +m1y
3dy7 e2 = dy2 �m1y

1dy7

e3 = dy4 +m2y
4dy7 e4 = dy4 �m2y

3dy7

e5 = dy5 +m3y
6dy7 e6 = dy6 �m3y

5dy7

e7 = dy7

UA
M =

✓
eam 0
0 1

◆

An example: lifting 4-parameters CSS

3 parameters flatgroup from twisted torus

Generalized CSS



Flatfolds

M7 =
U(1)n R24

R18

UA
M = RA

BUB
M R =

0

BB@

I6
cos(m4y7) sin(m4y7)

� sin(m4y7) cos(m4y7)

1

CCA

An example: lifting 4-parameters CSS

The extra twist is non-geometric

The final result is either a truncation to the 
massive modes or a true flat-fold, depending on 

the periodicity conditions



Stability?



Ungauged N=8 supergravity is finite up to 4 loops and 
possibly more, Gauging = new couplings (and masses)

What can we say about the finiteness of the quantum theory? 

One loop divergencies controlled by supertraces 
 

Example: One loop effective potential

Veff = 1
64⇡2StrM0⇤4 log ⇤2

µ2 + 1
32⇡2StrM2⇤2 � 1

64⇡2StrM4 log⇤2

+ 1
64⇡2Str

�
M4 logM2

�

Quantum corrections

Str
⇣
M2k

⌘
=

X

J

(�1)2J(2J + 1)tr(MJ)
2k



Quantum corrections

We computed the quadratic and quartic supertrace 
mass formulae for a generic N=8 gauged supergravity

Using:

1. Critical point condition;

2. Vanishing cosmological constant;

3. Quadratic constraints

we find that they vanish 

G.D., Zwirner

Str
�
M2

�
= Str

�
M4

�
= 0



Quantum corrections

As before, the classical potential has regions of marginal 
stability

The 1-loop correction to the potential is negative, hence 
the final vacuum is Anti de Sitter

The vevs get further corrections

The vacuum is N=0

If no non-susy AdS vacuum can be stable, these manifolds 
should have decay modes?



Summarizing:

Intriguing classical moduli space of Minkowski vacua

First examples of lift for such vacua

“Infinite” deformations used to generate new vacua and new 
uplifting manifolds (or flatfolds)

 Effective potential negative definite: problem for stability?

 What is the uplift of the “Father/Mother” 
vacuum?

Flatfolds



N=8 gauged supergravity models

N=8 Multiplet
�
gµ⌫ ,  

i
µ, Aij

µ , �
ijk, �ijkl

 

1 8 28 56 70

Mscal =
E7(7)

SU(8)

# dofs

Scalars are coordinates on 

E7(7) is the U-duality group in 4 dimensions

U-duality = generalized electric-magnetic duality

In 4d we have 
electric & magnetic 
vector fields
Hodge-dual to each other

eoms + BI
8
<

:

dF⇤ = 0

dG⇤ = d

✓
�L

�F⇤

◆
= 0



N=8 gauged supergravity models

Lvec = I⇤⌃(�)F
⇤ ^ ?F⌃ +R⇤⌃(�)F

⇤ ^ F⌃

AM
µ =

�
A⇤

µ , Aµ⇤

 
F⇤ ⌘ �L

�F⇤

FM �! SM
NFN S =

✓
A B
C D

◆

N = R+ i I �! (C +DN )(A+BN )�1

The sum of eoms+BI is invariant under duality transformations

The Lagrangian is not*                        (*according to the rules given previously)

Non-minimal couplings transform under symplectic rotations

Where

Gaillard, Zumino



Choice of duality frame = Choice of        and 

Symmetries of  Lagrangian

Ungauged models equivalent

N=8 gauged supergravity models

⇢ E7(7) ⇢ Sp(56,R)

R I

De wit

GL(28,R)\Sp(56,R)/E7(7)

redefinition of 
the coordinates of the 
scalar manifold

local redefinitions 
of vector fields (Non-local)

Electric-magnetic 
transformations



Gauging:  

make                        local using 

N=8 gauged supergravity models

t↵ 2 e7(7)

XM = ⇥M
↵ t↵g

AM
µ

generated by

Nicolai-
Samtleben.         

De wit-samtleben-
trigiante 

closure: [XM , XN ] = �XMN
PXP

locality: ⇥M
↵⇥M� = 0

susy: ⇥ 2 912 of E7(7)

Now most non-local transformations are incompatible 
with the 2-derivative action!



1+7 g7 (140+ 7)+3 ⌧ ijk + �ij⌧k 28�1 ✓(ij)

1�7 g̃7 (1400 + 70)�3 Qjk
i + �jiQ

k 280
+1 ⇠(ij)

35�5 hijkl 224�1 f i
jkl 21�1 ✓[ij]

350
+5 gijkl 2240

+1 Rjkl
i 210

+1 ⇠[ij]

Locally 
geometric

Geometric on 
S7 !!

n
Dµ = @µ +AM

µ ⇥M
↵t↵

Geometric

Gauged SUGRA from M-theory (e.g.) on T7. 912‘Fluxes’:

Example


