'Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Brane Wess-Zumino Terms in String Theory

Eric Bergshoeff

Groningen University

based on work with Fabio Riccioni, Olaf Hohm (DFT), Axel kleinschmidt and Tomas Ortín (work in progress)

Workshop String Dualities and Geometry

Centro Atomico Bariloche, January 15, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

'Exotic Branes' and Mixed-symmetry Potentials

Branes and *p*-form Potentials

'Exotic Branes' and Mixed-symmetry Potentials

'Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

000000000000

Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

Branes and *p*-form Potentials

'Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Branes

Branes are extended objects with a number of worldvolume and transverse directions. They are an essential part of (non-perturbative) string theory

- The NS-NS 2-form B₂ suggests a half-supersymmetric string
- The 3-form C_3 of 11D sugra couples to a half-susy M2-brane

$\mathit{sugra potential} \leftrightarrow \mathit{half-supersymmetric brane}$

Does it always work as simple as that?

▲日▼▲□▼▲□▼▲□▼ □ ののの

'Wess-Zumino term requirement'

the construction of a gauge-invariant WZ term requires, besides the embedding coordinates, the introduction of a number of extra worldvolume *p*-form potentials

We require worldvolume supersymmetry, i.e. these worldvolume fields must fit into a multiplet with 16 supercharges

Does the 'WZ term requirement' always lead to the rule that

potential \Leftrightarrow half-susy brane?

Summary and Open Issues

Input from Supergravity

• The T-duality representations of all high-rank form potentials have been determined using three different techniques:

• closure of the supersymmetry algebra

de Roo, Hartong, Howe, Kerstan, Ortín, Riccioni + E.B. (2005-2010)

• using the embedding tensor technique

for a review, see de Wit, Nicolai, Samtleben (2008)

using the very extended Kac-Moody algebra E₁₁/E₁₀
 West (2001); Riccioni, West (2007); Nutma + E.B. (2007); Damour, Henneaux, Nicolai (2002)

'Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

A scaling symmetry

All potentials transform as a representation of the T-duality group O(d,d) and scale under a scaling symmetry

The scaling weight α determines the dependence of the brane tension T on the string coupling constant g_s via

 $T \sim (g_s)^{\alpha}$

This scaling weight is invariant under dimensional reduction

'Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

(日)

A universal pattern arises

α	potentials	branes
$\boldsymbol{\alpha} = 0$	$B_{1,A}$, B_2	fundamental
$\alpha = -1$	$C_{2n+1,a},C_{2n,\dot{a}}$	Dirichlet
$\alpha = -2$	$D_{D-4}, D_{D-3,A}, D_{D-2,A_1A_2}, D_{D-1,A_1\cdots A_3}, D_{D,A_1\cdots A_4}$	solitonic
• • •		•

 $A(a, \dot{a})$ are vector (spinor)-indices of T-duality

 $\alpha = -3$: S-dual of D7-brane $\alpha = -4$: S-dual of D9-brane

Branes with $\alpha < -4$ have no ten-dimensional brane origin!

Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Question

given a (p + 1)-form potential which (components of its) T-duality repres. couple to a half-supersymmetric brane?

Outcome Wess-Zumino Term Requirement

Riccioni + E.B. (2010)

There is a simple group-theoretical characterization of which (components of the) T-duality representation couple to a half-supersymmetric brane

• the (group-theoretical) details can be found in our papers

• Comparing branes in different dimensions an interesting set of wrapping rules emerge.

The Solitonic Wrapping Rules

the wrapping rules of solitonic branes are given by

$$\mathrm{T}_{\mathsf{S}} \sim (g_{\mathfrak{s}})^{-2} : \left\{ egin{array}{c} \mathrm{wrapped} &
ightarrow & \mathrm{undoubled} \\ \mathrm{unwrapped} &
ightarrow & \mathrm{doubled} \end{array}
ight.$$

For instance, in 9D we have two solitonic 5-branes coming from an un-wrapped NS5-brane and a KK monopole

10D KK monopole :
 5 + 1 worldvolume directions1 isometry direction3 transverse directions

'Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

000

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Counting Solitonic Branes with $T \ge 3$

S <i>p</i> -brane	IIA/IIB	9	8	7	6	5	4	3
0						1	12	
1					1	10		
2				1	8			
3			1	6				
4		1	4					
5	1/1	2						

S(D-5)-brane and S(D-4)-brane_A

Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Solitonic Branes with $T \leq 2$

S <i>p</i> -brane	IIA/IIB	9	8	7	6	5	4	3
0						1	12	84
1					1	10	60	280
2				1	8	40	160	560
3			1	6	24	80	240	
4		1	4	12	32	80		
5	1/1	2	4	8	16			

The red numbers follow from imposing the Wess-Zumino term requirement

'Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

A Numerical Coincidence?

S <i>p</i> -brane	IIA/IIB	9	8	7	6	5	4	3
0						1	12	84
1					1	10	60	280
2				1	8	40	160	560
3			1	6	24	80	240	
4		1	4	12	32	80		
5	1/1	2	4	8	16			

Precisely the same numbers are reproduced by the solitonic wrapping rule !

'Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Question

what is the 10D origin of the solitonic branes with $T \leq 2$?

Note: extra input is needed to fill up the T-duality representations!

standard supergravity is not sufficient!

'Exotic Branes' and Mixed-symmetry Potentials

00000000

Outline

Summary and Open Issues

<ロ> (四) (四) (三) (三) (三) (三)

Branes and *p*-form Potentials

'Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

Summary and Open Issues

Mixed-Symmetry Potentials

• At the level of (linearized) supergravity T-duality can be recovered by assuming that these theories can be extended with a set of mixed-symmetry potentials with an underlying E_{10}/E_{11} -symmetry

 To recover T-duality at the level of branes we assume that these mixed symmetry potentials are in one to one correspondence with extended objects called 'exotic branes'. They have worldvolume, transverse and special isometry directions

see, e.g., Obers, Pioline (1999); Lozano-Tellechea, Ortín (2001)

see also work by de Boer and Shigemori (2010, 2012) \rightarrow 'T-folds'

Branes	and	<i>p</i> -form	Potentials
00000	0000	0000	

'Exotic Branes' and Mixed-symmetry Potentials 0000000 Summary and Open Issues

A 7D Example

$\alpha = -2$	$D_3, D_{4,A}, D_{5,[AB]}, D_{6,[ABC]}, D_{7,[ABCD]}$	$D_{6+n,n}$ (n = 0, 1, 2, 3, 4)
---------------	---	---------------------------------

The 7D solitonic domain wall 6-forms $D_{6,[ABC]}$ (A = 1, ..., 6) transform as 20 under SO(3,3). These 6-forms are dual to (constant) fluxes

10D origin	mixed-symmetry	flux (a=1,2,3)
NS5 (5 ₂)	D_6	H_{abc} (1)
KK5 (5 ¹ ₂)	D _{7,1}	f^{a}_{bc} (9)
5_{2}^{2}	D _{8,2}	$Q^{ab}{}_{c}$ (9)
5_{2}^{3}	D _{9,3}	R^{abc} (1)
5 ₂ ⁴	D _{10,4}	

'Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Brane WZ Terms and DFT

Where does $D_6 \equiv B_6$ fits into DFT?

In SUGRA one can dualize B_2 into B_6 without dualizing the metric tensor $g_{\mu\nu}$ but in DFT B_2 is part of the generalized metric \mathcal{H}_{MN} !

Standard Dualization of Kalb-Ramond Field

standard :
$$S[b] = -\frac{1}{12} \int d^D x H_{abc} H^{abc}$$
, $H_{abc} = 3\partial_{[a}b_{bc]}$

first - order :
$$S[D, H] = \int d^{D}x \left(-\frac{1}{12}H_{abc}H^{abc} + D^{abcd}\partial_{a}H_{bcd} \right)$$

$$\delta D^{\textit{abcd}} = \partial_e \Sigma^{\textit{eabcd}}$$

(E.o.M)
$$\partial_{[a}G_{bcd]} = 0$$
, $G^{abc} = \partial_d D^{dabc}$
(B.I.) $\partial_a G^{abc} = 0$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�?

'Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

Exotic Dualization

Hull (2001); Boulanger, Sundell, West (2015)

$$S[b] = -\frac{1}{12} \int d^{D}x H^{abc} H_{abc} = -\frac{1}{4} \int d^{D}x \left(\partial^{a} b^{bc} \frac{\partial_{a} b_{bc}}{\partial_{a} b_{bc}} - 2 \partial_{a} b^{ab} \partial^{c} b_{cb} \right)$$

$$S[Q,D] = \int d^{D}x \left(-\frac{1}{4} Q^{a|bc} Q_{a|bc} + \frac{1}{2} Q_{a|}^{ab} Q^{c|}_{cb} - \frac{1}{2} D^{ab|cd} \partial_{a} Q_{b|cd} \right)$$

$$\partial_{[a}Q_{b]|cd} = 0 \quad \Rightarrow \quad Q_{a|bc} = \partial_{a}b_{bc}$$

We now have a mixed-symmetry potential $D^{ab|cd} \sim D_{8,2}^{D=10}$

'Exotic Branes' and Mixed-symmetry Potentials

Linearized DFT

Summary and Open Issues

Use formulation with generalized fluxes \mathcal{F}_{ABC}

Aldazabal, Baron, Marques, Nunez (2011); Geissbuhler (2011)

Grana, Marques (2011); Geissbulher, Marques, Nunez, Penas (2013)

Duality leads to 4-form potential DABCD

Hohm, Penas, Riccioni + E.B. (2016)

$$\begin{array}{rcl} D^{\mu_{1}\cdots\mu_{4}} & \to & B_{6} \\ D^{\mu_{1}\cdots\mu_{3}}{}_{\mu_{4}} & \to & h_{7,1} \\ D^{\mu_{1}\mu_{2}}{}_{\mu_{3}\mu_{4}} & \to & D_{8,2} \\ D^{\mu_{1}}{}_{\mu_{2}\cdots\mu_{4}} & \to & D_{9,3} \\ D_{\mu_{1}\cdots\mu_{4}} & \to & D_{10,4} \end{array}$$

Can we define brane WZ terms in DFT?

Berkeley, Berman, Rudolph (2014); Bakhmatov, Berman, Kleinschmidt, Musaev and Otsukin (2017); Chatzistavrakidis, Gautason, Moutsopoulos, Zagermann (2014); Blair, Musaev (2017); Kleinschmidt, Ortín, Riccioni + E.B., work in progress

'Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

$\alpha = -2$: solitonic 5-brane WZ terms

Blair and Musaev (2017)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

$$\int d^6\xi \, q_{M_1\dots M_{10}} D^{M_1\dots M_4} \mathcal{D}_{a_1} X^{M_5} \dots \mathcal{D}_{a_6} X^{M_{10}} \epsilon^{a_1\dots a_6} \qquad \text{with}$$

$$\mathcal{D}_{a}X^{M} = \partial_{a}X^{M} - K^{-2}K^{M}_{\alpha}K^{\alpha}_{N}\partial_{a}X^{N},$$

$$\boldsymbol{q}_{\boldsymbol{M}_{1}...\boldsymbol{M}_{10}} = \boldsymbol{Q} \epsilon_{\nu_{1}..\nu_{10}} \frac{\partial Z^{\nu_{1}}}{\partial X^{M_{1}}} ... \frac{\partial Z^{\nu_{10}}}{\partial X^{M_{10}}}$$

• NS 5-brane: $q_{M_1...M_{10}} = Q \epsilon_{m_1...m_{10}}$ otherwise zero $\rightarrow D_6$

• KK-monopole: $q_{M_1...M_{10}} = Q \epsilon_{\nu_1...\nu_{10}} K_{M_1}^{\nu_1} \delta_{M_2}^{\nu_2} \cdots \delta_{M_{10}}^{\nu_{10}} \rightarrow D_{6x,x}$

Branes	and	<i>p</i> -form	Potentials
00000	0000	0000	

'Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

DFT Potentials

•
$$\alpha = 0$$
 : B_{MN}

- $\alpha = -1$: C_{α}
- $\alpha = -2$: D_{MNPQ}
- $\alpha = -3$: $E_{MN\alpha}$

• $\alpha = -4$: $F_{M_1 \cdots M_{10}}^+$, $F_{M_1 \cdots M_4, N_1 N_2}$, $F_{M_1 \cdots M_7, N}$:

What are the brane WZ terms within DFT?

A. Kleinschmidt, T. Ortín, F. Riccioni + E.B. (work in progress)

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

Exotic Branes' and Mixed-symmetry Potentials

Outline

Summary and Open Issues

000

Branes and *p*-form Potentials

'Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Summary and Open Issues

Summary

 In this talk I reviewed the classification of the potentials and branes of maximal supergravity using the Wess-Zumino term requirement and showed how this suggests the introduction of mixed-symmetry potentials and exotic branes

• all branes satisfy simple wrapping rules!

• I reported on some progress in how to describe these Wess-Zumino terms within DFT. More work remains to be done!

Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

000

Take Home Message

Can we understand the role of mixed-symmetry potentials better?

See, e.g., Bunster, Henneaux (2013)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

'Exotic Branes' and Mixed-symmetry Potentials

Summary and Open Issues

000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Thanks for your Attention !