Nu_2: R&D of detectors for future high statistics, high precision experiment

Overview of T2K-ND280

T.Tsukamoto(KEK) @ Workshop FJPPL'07 on 2007/05/09 for the ND280 group of the T2K collaboration

- Introduction
 - T2K & T2K-ND280 @ J-PARC
- Sub-detectors
 - On-Axis : INGRID 2007 proposal
 - Off-Axis : FGD, TPC, P0D, ECAL, SMRD

2006 application 2007 proposal

T2K : Tokai to Kamioka long base line neutrino experiment

2

WS FJPPL07 T.Tsukamoto

Sensitivity for $sin^22\theta_{_{23}}$, $\Delta m_{_{23}}{}^2$

Sensitivity to θ_{13}

WS FJPPL07 T.Tsukamoto

T2K-ND280

- Located ~280 m downstream of the proton target
- Measure neutrino beam direction by on-axis detector
- Measure neutrino beam properties and neutrino interaction cross sections and kinematics by offaxis detector
 - v_{μ} disappearance:
 - flux and spectrum of $\nu_{\!_{\mu}}$ prior to oscillation
 - v_e appearance:
 - flux and spectrum of $\nu_{\rm e}$ in beam

WS FJPPL07 T.Tsukamoto

ND280 sub-detectors

2007/05/09

- Scintillator + WLS optical fiber + photo sensor
 - INGRID (Interactive Neutrino GRID detector) : On-Axis
- FGD (Fine Grained Detector) : charged, tracking
 - P0D (Pi-0 detector) : π^{0} , γ
 - ECAL (Electromagnetic CALorimeter): e,γ
 - SMRD (Side Muon Range Detector): μ
 - Gas detector
 - TPC (Time Projection Chamber) : charged, tracking
 Talk by M.Zitto

Off-axis detector is in 0.2T magnetic field

Off-Axis

INGRID: Physics Motivation

Example: proton beam hits off-center of the target.

WS FJPPL07 T.Tsukamoto

INGRID (on-axis detector)

- Iron(10cm) / Scintillator(1.25cm) sandwich 1mx1m
- Profile centre : $\Delta < 5$ cm --> systematics 2% between modules ---> can be achieved with scintillator plane with eff =99.5%, which was achieved in K2K SciBar

WS FJPPL07 T. I sukamoto

INGRID event reconstruction.

- FGD
 - Scintillator bars arranged in alternating X-Y planes
 - fine segmentation needed to track low energy protons, in order to distinguish CCQE and non-elastic interaction
 - Two modules
 - ~1ton target material/module, 36.5cm thickness/module
 - Back FGD will contain water target layers
 - 2.5cm water layers between each x-y scintillator plane

Alternating X-Y scintillator planes 9.6mmx9.6mm bars 30 X-Y planes /14 planes with water target

15

FGD

FGD scintillator bars

Scintillator production run in Nov '06: ~11500 bars produced. All bars checked for blocked holes, and sampled for size and light yield.

Light yield as measured with bar scanner and radioactive source is consistent to 4% (RMS) across the whole run. WS FJPPL07 T.Tsukamoto

Photo of production bar

MC v_{μ} CCQE (Charged Current Quasi-Elastic) event

P0D configuration

Dimensions: 2200mm wide 2340mm tall 2413mm long

40 module layers 10,560 channels

Total mass ~ 16 ton Target ~ 10 ton (water ~4 ton)

Use "same" module design for all PØD elements

Differences Between Target and ECal PØDules

- Target PØDules
 - 0.6 mm Lead to convert γs
 - 26 PØDules

2007/05/09

ECal PØDules

- Pb is ~2 mm (x2) to contain showers
- 16 PØDules

- Barrel-ECAL 10.5X₀
 - 32 layers, (4cm x 1cm) scintillator bars
 - 31 layers, 1.75mm Pb

DS-ECAL 11X0

- 34 layers, (4cm x 1cm) scintillator bars
- 33 layers, 1.75mm Pb
- POD-ECAL 4.5X0
 - 6 layers, (17cm x 1cm) scintillator slabs
 - 5 layers, 5mm Pb

Basket

Prototype of SMRD module

4-slabs in one module

In the yoke gaps --> Iron(yoke) + scintillator ==> range detector

WS FJPPL07 T.Tsukamoto

Photo sensor for ND280 Multi-pixel Geiger mode avalanche photodiode

MPPC (Hamamatsu)

Microstructure of 100 pixel device

new design

MRS APD (CPTA, Moscow)

Spectrum of MRS APD & MPPC

Main parameters of photo-sensors

	MRS APD	MPPC
Sensitive area	~ 1.1 mm²	~ 1 mm²
Number of pixels	556	100/400
Geometrical efficiency	70-80 %	70-80%
PDE for green light	15-30%	15-30%
Bias voltage range	25-50 V	60-70V
Gain	(0.3-0.8)x10 ⁶	(0.5-3.0)x10 ⁶
Cross talk	`5-10% ´	20-35%
Dark rate (th=0.5 p.e.)	< 1MHz	<0.5 MHz
Stability, life time	OK *)	OK **)
Sensitivity to magnetic field	no	no

*) Should be measured for MRS sensors in new package **) Will be tested using large number of MPPC's

==> Almost all parameters are OK Optical connectors for sensors are being designed, will be tested. 500 samples of MPPC are delivered and will be tested soon.

- Summary of T2K-ND280 status
 - Design of sub-detectors will be fixed soon
 - Prototyping and tests are being performed and in good shape
 - Photo-sensors (APD MRS, MPPC) are almost ready for ND280 use
 - Production and assembling is scheduled for installation at J-PARC in early 2009