

Projet de refondation des laboratoires de la vallée d'Orsay

Groupe de travail thématique Instrumentation et Détecteurs

Jeudi 11 Mai 2017

Instrumentation à IMNC

Objectifs: développer de nouvelles approches instrumentales radio-isotopique et optique pour la recherche biomédicale en Cancérologie et Neurobiologie (fondamental, diagnostique et thérapeutique)

Fil rouge instrumental : finalités cliniques et biologiques qui stimulent le développement de systèmes d'imagerie miniaturisés/portables originaux

Approche intégrée : de la R&D amont jusqu'à la finalité biomédicale

Développement technologique

 $\qquad \qquad \longleftarrow$

Définition, conception imageurs

Validation biomédicale

Collaborations R&D IN2P3 et industriels

Réseau de collaborations cliniques et biologiques

Axes scientifiques

Imagerie clinique:

- imagerie radio-isotopique per-opératoire pour guider la chirurgie d'exérèse
- imagerie optique endoscopique pour le diagnostic in vivo
- imagerie radio-isotopique ambulatoire pour le suivi thérapeutique en cancérologie

Imagerie préclinique :

- sondes intracérébrales pour les études sur le petit animal vigile en neurosciences
- imagerie et stimulation optique en neuropathologie

Instrumentation à IMNC : QUOI ?

Détection radio-isotopique :

- imagerie et spectroscopie gamma et beta
- systèmes de photodétection miniaturisés, détection de bas niveaux de lumière, scintillation
- électronique multi-voies intégrée
- acquisition et traitement de données (reconstruction d'image) en temps réel
- simulation

Détection et stimulation optique :

- imagerie multispectrale et temps de vie de fluorescence
- imagerie optique non-linéaire (2PF, SHG)
- microscopie optique à champ large
- détection fibrée
- simulation

3

Instrumentation à IMNC : QUI?

Un service d'instrumentation :

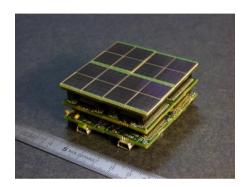
- Laurent Pinot (IR CNRS)
- Cédric Esnault (AI CNRS)

- Darine ABI AIDAR (MCF, Paris Diderot)
- Yves CHARON (PR, PARIS Diderot)
- Laurent MENARD (MCF, Paris Diderot)
- Frédéric PAIN (MCF, Paris Sud)
- Marc-Antoine VERDIER (MCF, Paris Diderot)

Interaction directe

Priorités définies par le chef de service

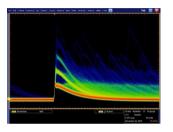
Instrumentation à IMNC : COMMENT ?

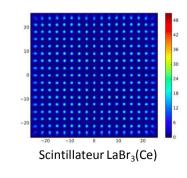


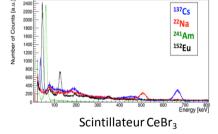
Réseau de collaborations :

- Physique: P2IO (LAL, IPN, CSNSM, Pôle OMEGA) et IN2P3 (IPHC, CPPM)
- Clinique: Hôpitaux Tenon, Jean-Verdier, Lariboisière et Mondor
- Biologie : CERMEP (Lyon) et CNPS (Orsay)
- Industriel: AG Medical, LUXERI, KETEK
- Physique: XLIM (Limoges), LCP (Orsay), LOB (Palaiseau), Brain Physiology Lab (Paris Descartes)
- Clinique : Hôpitaux Henri Mondor, Saint Anne
- Biologie: Biologie Fonctionnelle et Adaptative (Paris-Diderot), IMIV (SHFJ, Orsay)

Imagerie per-opératoire chirurgicale

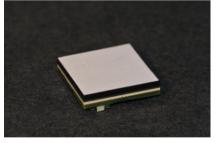




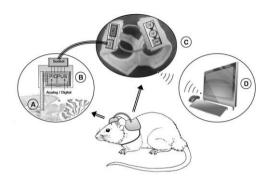

Imageur gamma miniaturisé haute-résolution

Systèmes de photodétection miniaturisées (SiPM + ASIC, collaboration LAL, IPN)

Imagerie per-opératoire chirurgicale



Sonde beta fibrée

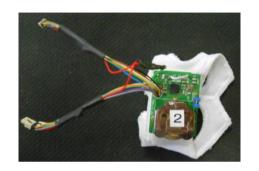


Imageur positron (collaboration LAL)

Imagerie moléculaire du petit animal vigile

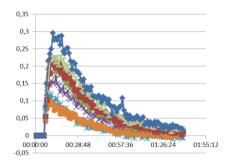
A

P10

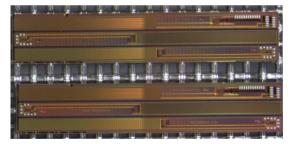

P10

Grad

Os. mm

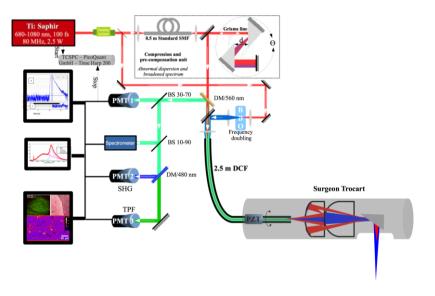

P1 | P10

Wire-Eonding Analogue Section Numeric Section | B



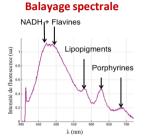
Sonde intracérébrale silicium télémétrique (CPPM, LAL)

Mesure cinétique chez l'animal vigile

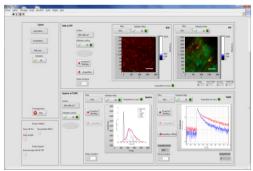


Nouvelles sondes intracérébrale CMOS (IPHC)

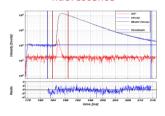
Endomicroscope fibré multimodale pour l'aide au diagnostic en temps réel



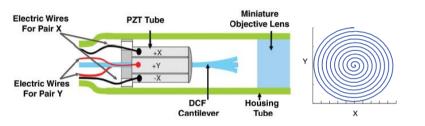
Architecture de l'endomicroscope non linéaire

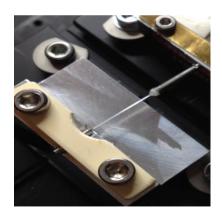


Endoscope bi-fibré pour la mesure spectrale et de la durée de vie

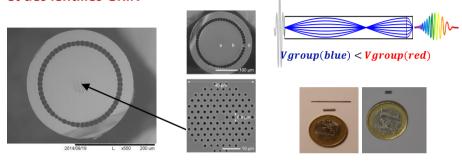


Quatre modalités de détection

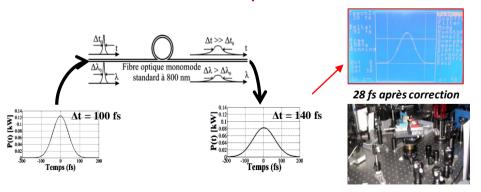

Analyse de la durée de vie de fluorescence



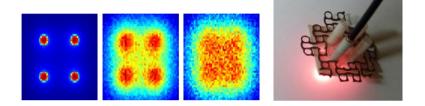
Endomicroscope fibré multimodale pour l'aide au diagnostic en temps réel

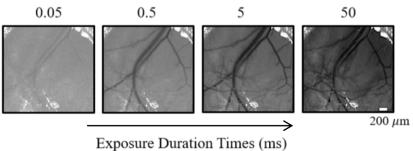


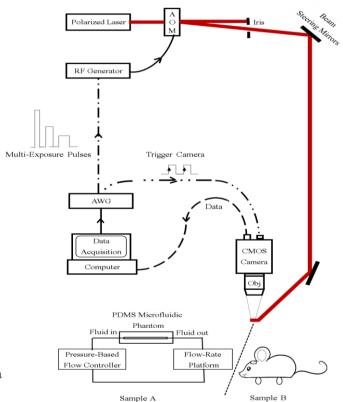
Système de balayage miniature



Caractérisation des fibres optiques à doubles gaine microstructurées et des lentilles GRIN


Correction des durées d'impulsions en sortie des fibres


Imagerie et stimulation optique en neuropathologie



Optodes pour la stimulation optique in vivo chez le primate

Imagerie quantitative *in vivo* du flux sanguin par imagerie speckel multi-exposition

