Nanodevices for bio-inspired computing

Julie Grollier

CNRS/Thales lab, Palaiseau, France

Collaborations

CNRS/Thales spintronics team:

Alice Mizrahi, Steven Lequeux, Jacob Torrejon, Mathieu Riou, Philippe Talatchian, Miguel Romera, Flavio Abreu Araujo, Daniele Pinna, Romain Lebrun, Paolo Bortolotti, Vincent Cros

AIST Tsukuba Japan:

Sumito Tsunegi, Rie Matsumoto, Akio Fukushima, Kay Yakushiji, Hitoshi Kubota, Shinji Yuasa

IMS Bordeaux France:

Gwendal Lecerf, Jean Tomas, Sylvain Saïghi

CNRS/Thales oxide team:

Vincent Garcia, Manuel Bibes, Sören Boyn, André Chanthbouala, Karin Garcia, Cécile Carretero, Stéphane Fusil, Stéphanie Girod, Eric Jacquet, Hiroyuki Yamada, Agnès Barthélémy

IEF Orsay France:

Damir Vodenicarevic, Joo-Von Kim, Nicolas Locatelli, Damien Querlioz

NIST Gaithersburg: Guru Khalsa, Mark Stiles

Impressive progress in artificial intelligence but in terms of power efficiency, the brain is the winner

AlphaGo: 150 kW

Computing « like the brain » requires increasing parallelism

- The brain is massively parallel
- Artificial Neural networks as well
- Recent progress in AI: new models, but also increasing parallelism of information processing (GPUs)
- Current trend : FPGAs

Computing with low energy requires entangling memory with processing

Power consumption in current computers is high because of Von Neumann's bottleneck: separation between memory and processing

Digital computer

Brain

20 W in total !

Recent progresses with CMOS technology : example of IBM's TrueNorth chip

- Highly parallel, colocalized memory and processing
- Low power consumption 20 mW/cm² (processor 100 W/cm²)
- Cannot learn

Merolla et al, *Science* **345**, 668 (2014)

Relying on current technology (CMOS) alone is not a long-term solution

- A transistor is nanoscale but it is just a switch
- CMOS does not provide memory (volatile)

CMOS synapse 10 µm

Merolla et al, Science 345, 668 (2014)

Schemmel et al., *IJCNN* (2006) ⁷

To build smart chips, novel nanoscale devices are needed to emulate neurons and synapses

- Brain : 10¹¹ neurons, 10¹⁵ synapses
- AlphaGo: millions of neurons and synapses
- Visual system: 500 millions of neurons

Hundreds of millions of neuron-like and synapse-like devices in a 1 cm² chip → Each device << 1 µm²

Ingredients needed for neural networks: non-linearity, memory and plasticity

- Synapses: analog valves (weights w)
- Neurons: non-linear

Many options $! \rightarrow !$ will focus on electronic devices

- Nano-Synapses
- Nano-Neurons
- Why neural networks and nanodevices are a great match

- Nano-Synapses
- Nano-Neurons
- Why neural networks and nanodevices are a great match

The fundamental ingredients of synapses are memory and plasticity

Synapses: analog valves
Learning: tuning synapses

Memristors are tunable nano-resistors with memory

tunable nano-resistor

Chua, *IEEE Trans. Circuit Theory* (1971)

Red-Ox

Phase change

Yang et al., Nat. Nano. (2013)

Kuzum et al, Nanotechnology (2013)

Memristors that do not involve large ionic/atomic displacements are interesting for improved endurance and speed

André Chanthbouala, **JG** et al, *Nat. Mat.* 11, 860 (2012) Steven Lequeux, **JG** et al, *Sci. Rep.* 6:31510 (2016)

Fukami et al, Nat. Mater. 15, 535 (2016)

Memristors emulate electronic synapses: the weight is their tunable conductance G

U_i < V_{th} : calculating mode U_i > V_{th} : learning mode

One challenge being currently tackled is building large arrays of memristors

Recent progress has been achieved towards the commercialization of binary memories made of memristor arrays

 3D Xpoint, Intel/Micron
Optane Lenovo
32 Gbits

http://www.theregister.co.uk/2017/01/04/optane_arrives_at_ces/

As for neuromorphic computing with memristors, the field is at its beginning

Supervised learning, back-propagation

Prezioso et al, *Nature* 521, 61 (2015)

Burr et al, IEEE IEDM (2014)

IBM experiments: Handwritten digit recognition with $\sim 165\ 000$ synapses (phase change with selector)

Memristors' resistance can evolve autonomously through spikes of neighbouring neurons: unsupervised learning possible

Jo et al, *Nanoletters* 10, 1297 (2010) Zamarrenos-Ramos et al, *Frontiers in Neuroscience* 5, 26 (2011) Sören Boyn, **JG** et al, Nature Com. 8, 14736 (2017)

Perspectives

- Lots of technical work needed for improving memristors
- Experimental demonstration of unsupervised learning (coming soon)
- More physics for more synapse-like functionalities
- Novel types of devices

- Nano-Synapses
- Nano-Neurons
- Why neural networks and nanodevices are a great match

Biological neurons are oscillators

- Integration
- Spikes
- Non-linear oscillator
- Rate coding

Non-linear dynamics in the brain has inspired many computing models

Complex transients

Synchronization

Many attemps to realize neuromorphic computing with nanoscale oscillators: memristive oscillators, magnetic oscillators, MEMS...

Hoppensteadt et al, *PRL* (1999), Aonishi et al, *PRL* (1999) Jaeger et al, *Science* (2004)

Nanoscale oscillators are noisy/unreliable Neural networks are tolerant of input noise, but not of component unreliability

Magnetic oscillators are nanodevices with well controlled dynamics

Nanoscale, fast (GHz) and easily measurable

Same structure as magnetic memories

Nicolas Locatelli, V. Cros and J. Grollier, Spin-torque building blocks, Nat. Mat. 13, 11 (2014)

Spin-torque nano-oscillators can emulate neruons because their amplitude dynamics is non-linear and well-controlled

Input: current Output: amplitude of the oscillator's voltage

Proof of neuromorphic computing with spintorque nano-oscillators: computing with a single oscillator through time-multiplexing

Reservoir computing approach

Appeltant et al, *Nat. Com* 2:468 (2011); Martinenghi et al, *PRL* 108, 244101 (2012) ²⁶

Task: spoken digit recognition (NIST TI-46 corpus)

Experimental results of spoken digit recognition

Experimental results of spoken digit recognition

Experimental results of spoken digit recognition

Spectrogram

Cochlear

First demonstration of neuromorphic computing with a nanoscale oscillator

Jacob Torrejon-Diaz, Mathieu Riou, Flavio Abreu-Araujo, JG et al, arXiv:1701.07715

Fully parallel networks are necessary to speed up computing

 $1 s \leftarrow One million oscillators \longrightarrow 1 \mu s$

Time-multiplexed network

Parallel neural network

No pre-processing

Coupling spin-torque nano-oscillators towards parallel neural networks

Enhanced ability to interact and synchronize

Slavin et al, *IEEE Trans Mag* 45, 1875 (2009) Awad et al, *Nat. Phys*, 10.1038/NPHYS3927 Hynix/Toshiba IEDM 2016

- Nano-Synapses
- Nano-Neurons

• Why neural networks and nanodevices are a great match

Novel nanodevices: interesting features but....

→ High device variability
→ High sensitivity to noise
→ Stochastic behavior

(Memristors, Hewlett-Packard)

(Nanomagnetic logic, Cowburn et al.)

(Carbon nanotube)

(Spin transfer oscillator, CNRS/Thales)

Not adapted to boolean computing but what about neuromorphic computing ?

Thanks to their plasticity, neural networks are highly resilient against nanodevice variability !

Damien Querlioz et al, IEEE Trans. Nano., vol. 12, num. 3, p. 288 (2013)

Biological synapses and neurons are noisy: the brain seems to operate at the thermal limit to minimize its power consumption

Computing at low power with stochastic components is possible

How can we realize reliable computations with stochastic devices ?

Stochastic computing: sampling multiple times, averaging

Can we even leverage noise for computing ?

Randomness can be useful Example: stochastic resonance

Low noise

Optimal noise

High noise

Gammaitoni et al, Reviews Of Modern Physics, 70(1), 223–287 (1998)

Superparamagnetic tunnel junctions:

✓ Can synchronize to small periodic signals

Alice Mizrahi, Damien Querlioz, JG et al, Sci. Rep. 6:30535 (2016)

✓ Are promising building blocks for Boltzmann machines

Camsari et al, arXiv:1610.00377

Thermal diffusion of Skyrmions can be used for reshuffling signals or as neurons for stochastic computing

Daniele Pinna, JG et al, arXiv:1701.07750

Nanodevices allow using physics for computing

Hopfield nets physics

attractors = energy minima

Hopfield neural nets

Ising spin system inspiration

Back to the spin system !

J. Grollier, D. Querlioz, M. D. Stiles, *PIEEE* vol.104, n°10, 2024 (2016)

Conclusion

- Nanodevices open new perspectives for neuromorphic computing
- Working at the thermal limit \rightarrow low power consumption
- Memristors can emulate synapses
- Nano-oscillators can emulate neurons
- The challenge is to assemble them densely together for computing
- If we succed: smart chips that can learn and adapt autonomously

Comparison between oscillators

	Lateral dimension	Energy / oscillation	Freq.	Power consumption	Operating time	Ability to sync.
CMOS neuron	> 30 µm	265 pJ	10 Hz	265 nW	Infinite	Yes (AER)
Accelerated CMOS neuron	≈ 10 µm	8.5 pJ	1-10 MHz	8-40 μW	Infinite	Yes (AER)
CMOS ring oscillator	6 μm	6 nJ	200 KHz	1.2 nW	Infinite	?
CMOS ring oscillator	6 μm	30 fJ	1.5 GHz	50 μW	Infinite	?
CMOS ring oscillator	≈ 300 µm	≈ 1 pJ	8-16 GHz	20 mW	Infinite	Yes
Electro-optical oscillator	> 1 cm	1 nJ	≈ GHz	≈1W (laser)	Infinite	Yes
Memristive oscillator	> 100 nm	> 33 pJ	300 MHz	> 150 μW	Hours	Yes
Our spin-torque oscillator	300 nm	3 pJ	300 MHz	1 mW	> Months	Yes
Next gen spin- torque oscillator	10 nm	100 aJ	10 GHz	1 μW	> Months	Yes