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Impressive progress in artificial intelligence but 
in terms of power efficiency, the brain is the 

winner  
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Brain: 20W 

AlphaGo: 150 kW 



Computing « like the brain » requires 
increasing parallelism 

• The brain is massively parallel 

• Artificial Neural networks as well 

• Recent progress in AI: new models, but also increasing 
parallelism of information processing (GPUs) 

• Current trend : FPGAs 
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Computing with low energy requires entangling 
memory with processing 

Power consumption in current computers is high because of 
Von Neumann’s bottleneck: separation between memory and 
processing 
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100 W/cm2 20 W in total ! 



Recent progresses with CMOS technology : 
example of IBM’s TrueNorth chip 

• Highly parallel, colocalized memory and processing 

• Low power consumption 20 mW/cm2 (processor 100 W/cm2) 

• Cannot learn 

 

6 Merolla et al, Science 345, 668 (2014) 

5.4 billion transistors 

256 million synapses 

5000 neurons 

(1 million neurons  

w. time-multiplexing) 



Relying on current technology (CMOS) alone is 
not a long-term solution  

• A transistor is nanoscale but it is just a switch 

• CMOS does not provide memory (volatile) 
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10-100 µm 

SRAM banks  

plasticity 

Schemmel et al., IJCNN (2006) 

CMOS neuron 

CMOS synapse 10 µm 

Merolla et al, Science 345, 668 (2014) 



To build smart chips, novel nanoscale devices 
are needed to emulate neurons and synapses  
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Hundreds of millions of neuron-like and synapse-like 
devices in a 1 cm2 chip  
 Each device << 1 µm2 

• Brain : 1011 neurons, 1015 synapses 

• AlphaGo: millions of neurons and synapses 

• Visual system: 500 millions of neurons 

 

 



Ingredients needed for neural networks:  
non-linearity, memory and plasticity 
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• Synapses: analog valves 
(weights w) 

• Neurons: non-linear 

+1 

-1 

x1 

x2 

x3 

y 

w1 

w2 

w3 

y = f ( w1 x1 + w2 x2 + w3 x3) 



 

• Nano-Synapses 

• Nano-Neurons 

• Why neural networks and 
nanodevices are a great match 
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Many options !  I will focus on electronic devices 
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• Nano-Synapses 

• Nano-Neurons 

• Why neural networks and 
nanodevices are a great match 



The fundamental ingredients of synapses 
are memory and plasticity 

• Synapses: analog valves 
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• Learning: tuning synapses 

input output 

neuron synapse 



Memristors are tunable nano-resistors with memory 
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Red-Ox Phase change 

tunable 
nano-resistor 

Chua, IEEE Trans.  

Circuit Theory (1971) 

Yang et al., Nat. Nano. (2013) Kuzum et al, Nanotechnology (2013) 



Memristors that do not involve large 
ionic/atomic displacements are interesting for 

improved endurance and speed 
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André Chanthbouala, JG et al, Nat. 
Mat. 11, 860 (2012)  

Spintronic 

Steven Lequeux, JG et al, Sci. Rep. 
6:31510 (2016)  

Fukami et al, Nat. Mater. 15, 535 (2016) 

Ferroelectric 



Vth 

Memristors emulate electronic synapses:  
the weight is their tunable conductance G 
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Ui < Vth : calculating mode 
Ui > Vth : learning mode 

G1 

G2 

Gi 

Kirchhoff’s law 

Current  
= S Gi Ui  

memristor 



One challenge being currently tackled is 
building  large arrays of memristors 

• 3D Xpoint, 
Intel/Micron 
Optane Lenovo 
32 Gbits 
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http://www.theregister.co.uk/2017/01/04/optane_arrives_at_ces/ 

memristor 

selector 

Recent progress has been achieved towards the commer-
cialization of binary memories made of memristor arrays 



As for neuromorphic computing with 
memristors, the field is at its beginning 
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IBM experiments: Handwritten digit recognition with  
 165 000 synapses (phase change with selector)  

Burr et al, IEEE IEDM (2014)  

Supervised learning, back-propagation 

TiO2 

Prezioso et al, Nature 521, 61 (2015) 



Memristors’ resistance can evolve autonomously 
through spikes of neighbouring neurons:  

unsupervised learning possible 
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Spike timing plasticity 

Jo et al, Nanoletters 10, 1297 (2010) 

Zamarrenos-Ramos et al, Frontiers in Neuroscience 5, 26 (2011) 

Sören Boyn, JG et al, Nature Com. 8, 14736 (2017) 



Perspectives 

• Lots of technical work needed for improving 
memristors 

• Experimental demonstration of unsupervised 
learning (coming soon) 

• More physics for more synapse-like 
functionalities 

• Novel types of devices 
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• Nano-Synapses 

• Nano-Neurons 

• Why neural networks and 
nanodevices are a great match 



Biological neurons are oscillators 

• Integration 

• Spikes 

• Non-linear oscillator 

• Rate coding 
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Non-linear dynamics in the brain has inspired 
many computing models 
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Complex transients 

synapse: neuron: oscillator coupling neuron: oscillator 

Many attemps to realize neuromorphic computing with nanoscale 
oscillators: memristive oscillators, magnetic oscillators, MEMS… 

Hoppensteadt et al, PRL (1999), Aonishi et al, PRL (1999) Jaeger et al, Science (2004) 



Nanoscale oscillators are noisy/unreliable 
Neural networks are tolerant of input noise, but 

not of component unreliability   
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Magnetic oscillators are nanodevices with well 
controlled dynamics 
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CoFeB 

FeB 

MgO 

spin  torque 

Nicolas  Locatelli, V. Cros and J. Grollier, Spin-torque building blocks, Nat. Mat. 13, 11 (2014)  

magnetic tunnel junction 

compatible with CMOS 

10-100 nm 

Nanoscale, fast (GHz) and easily measurable  

Same structure as magnetic memories 
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Spin-torque nano-oscillators can emulate neruons 
because their amplitude dynamics is non-linear and 

well-controlled 
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Proof of neuromorphic computing with spin-
torque nano-oscillators: computing with a single 

oscillator through time-multiplexing 
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Neuron 
Synapse 

j i 

State of the oscillator 

Time 

t 
t+q 

t+2q 
… 

Appeltant et al, Nat. Com 2:468 (2011); Martinenghi et al, PRL 108, 244101 (2012) 

Reservoir computing approach  



Task: spoken digit recognition (NIST TI-46 corpus) 

27 

0 5000

-0.1

0.0

0.1
"1"

A
m

p
lit

u
d

e
 (

a
.u

.)

Time (a.u.)

Input: audio file 

Spectrogram 
or Cochlear 

Acoustic features 

Output  
Oscillator 

Pre-processing Computer 

Recorded 
trace 

Pre-
processed 

input 

"1" 



28 

0 5000

-0.1

0.0

0.1
"1"

A
m

p
lit

u
d

e
 (

a
.u

.)

Time (a.u.)

Input: audio file 

Spectrogram 
or Cochlear 

Acoustic features 

Output  
Oscillator 

Pre-processing Computer 

Recorded 
trace 

Pre-
processed 

input 

"1" 

Experimental results of spoken digit recognition 

1 2 3 4 5 6 7 8 9

20

40

60

80

S
u
c
c
e
s
s
 r

a
te

 (
%

)

Utterances for training 

With oscillator 

Spectrogram 

80% 



29 

0 5000

-0.1

0.0

0.1
"1"

A
m

p
lit

u
d

e
 (

a
.u

.)

Time (a.u.)

Input: audio file 

Spectrogram 
or Cochlear 

Acoustic features 

Output  

No oscillator 

Oscillator 

Pre-processing Computer 

Recorded 
trace 

Pre-
processed 

input 

"1" 

Experimental results of spoken digit recognition 

1 2 3 4 5 6 7 8 9
0

20

40

60

80

S
u
c
c
e
s
s
 r

a
te

 (
%

)

Utterances for training 

With oscillator 

Without oscillator 

Spectrogram 

+ 70% 



30 

0 5000

-0.1

0.0

0.1
"1"

A
m

p
lit

u
d

e
 (

a
.u

.)

Time (a.u.)

Input: audio file 

Spectrogram 
or Cochlear 

Acoustic features 

Output  

No oscillator 

Oscillator 

Pre-processing Computer 

Recorded 
trace 

Pre-
processed 

input 

"1" 

Experimental results of spoken digit recognition 

1 2 3 4 5 6 7 8 9
0

20

40

60

80

S
u
c
c
e
s
s
 r

a
te

 (
%

)

Utterances for training 

With oscillator 

Without oscillator 

Spectrogram 

+ 70% 

1 2 3 4 5 6 7 8 9
65

70

75

80

85

90

95

100

S
u
c
c
e
s
s
 r

a
te

 (
%

)

Utterances for training 

With oscillator 

Without oscillator 

Cochlear 

99.6% 



31 

State of the art: 96 to 99.8 % 

First demonstration of neuromorphic computing 
with a nanoscale oscillator 

Jacob Torrejon-Diaz, Mathieu Riou, Flavio Abreu-Araujo, JG et al, arXiv:1701.07715 
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Fully parallel networks are necessary to speed 
up computing 
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One million oscillators 1 s 1 µs 

Parallel neural network 
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Coupling spin-torque nano-oscillators towards 
parallel neural networks 

Enhanced ability to interact and synchronize 
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microwave currents 
dipolar fields,  

spin waves 

neuron neuron 

synapse 

Slavin et al, IEEE Trans Mag 45, 1875 (2009)   

Awad et al, Nat. Phys, 10.1038/NPHYS3927  

Hynix/Toshiba IEDM 2016 
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• Nano-Synapses 

• Nano-Neurons 

• Why neural networks and 
nanodevices are a great match 



Novel nanodevices: interesting features but…. 
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→ High device variability 
→ High sensitivity to noise 

→ Stochastic behavior 

Not adapted to boolean computing but 
what about neuromorphic computing ? 

(Memristors, 

Hewlett-Packard) 

(Carbon nanotube) 
(Nanomagnetic logic, 

Cowburn et al.) 
(Spin transfer 

oscillator, 

CNRS/Thales) 



Thanks to their plasticity, neural networks are 
highly resilient against nanodevice variability ! 
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simulations 

Damien Querlioz et al, IEEE Trans. Nano., vol. 12, num. 3, p. 288 (2013) 



Biological synapses and neurons are noisy:  
the brain seems to operate at the thermal limit 

to minimize its power consumption 
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Computing at low power with 
stochastic components is possible 

Neural spikes in response to the same input recorded 50 times 



How can we realize reliable computations with 
stochastic devices ? 

Stochastic computing: sampling multiple times, averaging 
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Can we even leverage noise for computing ? 
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Low noise Optimal noise High noise 

Randomness can be useful 
Example: stochastic resonance 

Gammaitoni et al, Reviews Of Modern Physics, 70(1), 223–287 (1998) 



Superparamagnetic tunnel junctions:  
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Alice Mizrahi, Damien Querlioz, JG et al, Sci. Rep. 6:30535 (2016) 

 Can synchronize to small periodic signals 

Camsari et al, arXiv:1610.00377  

Are promising building blocks for Boltzmann machines  



Thermal diffusion of Skyrmions can be used for 
reshuffling signals or as neurons for stochastic 

computing 

41 
Daniele Pinna, JG et al, arXiv:1701.07750 
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Nanodevices allow using physics for computing 

Hopfield nets physics 
attractors = energy minima 

Hopfield neural nets 

Ising spin system inspiration 

Back to the spin system !  

J. Grollier, D. Querlioz, M. D. Stiles, PIEEE vol.104, n°10, 2024 (2016) 



Conclusion 

• Nanodevices open new perspectives for neuromorphic 
computing 

• Working at the thermal limit  low power consumption 

• Memristors can emulate synapses 

• Nano-oscillators can emulate neurons 

• The challenge is to assemble them densely together for 
computing 
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• If we succed: smart 
chips that can learn 
and adapt 
autonomously 



Comparison between oscillators 
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