

Fluides complexes La matière dans tous ses états

P. Coussot

Univ. Paris-Est, Laboratoire Navier

Various liquids poured under same conditions

Complex fluids

Fresh concrete

Liquid chocolate

Foams

Polymer

« Fluids » : May be reversibly deformed at will
« Complex » : Viscous, elastic, and plastic
+ evolutions / velocity or time

Blood

Magma

Characterization: Rheometry

Newtonian fluid

 $\eta = Cst$.

Complex fluid

$$\eta(t) = \mathsf{F}_{\theta < t}(\dot{\gamma}(\theta))$$

Shear-thinning, viscoelastic, thixotropic, Viscoplastic, etc

Viscosity of a gas

$$\mu \propto n\lambda \sqrt{mk_{B}T}$$

- Molecules per unit volume
- λ Mean free path

Viscosity of a liquid

- Intermolecular distance
- ^{*v*} Cohesion energy

Components and scales

Mechanical behavior:

F(elementary components, dominant interactions, concentration, regime)

SUSPENSIONS

Volume fraction: ϕ

$$= \frac{V_{Solid}}{V_{Total}}$$

Maximum packing fraction:

 $\phi < \phi_m$

Rheology of suspensions

Flexibility - Resistance

GEL

IROISE LONGUE

Shaping

- « *Plasticity* » : Relative gliding of molecules
- « Elasticity » : Molecule deformations
- « **Rigidity** » : Glass transition, crystallisation, cross-linking

Deformability

Extrusion - Moulding

3D printing

=> Variable shape and size possible around an equilibrium mean size

Polymers in solution

Affinity with solvent 🖊

Apparent chain size 🖊

Chain deposits on mica (from AFM)

Roiter and Minko, J. Phys. Chem. 2007

Rheology of polymer suspensions

Rheology of polymer suspensions

Mechanical properties of chains

Viscous friction :

Relative motion of chains

=> Viscosity = F(concentration, conformation, chain length)

Elastic deformation

Chain elongation: entropy loss => Supply energy to keep this length

$$\Delta G = f dr = -T dS$$

$$S = k_B \ln(\Omega_T \psi d\omega) = k_B \ln \psi + \mathrm{Cst}.$$

 $\Omega_{\scriptscriptstyle T}$ Total number of configurations $d\omega$ Characteristics volume

 \Rightarrow Force: $f = 2k_B T \beta^2 r$

Bouncing

Ex: Silicone paste

Breakage

EMULSIONS AND FOAMS

Rheological behavior: concentration regimes

essentially Newtonian

essentially yield stress fluids

Simple shear creep tests, after same preparation, at different stresses: $\{ au_n\}$

Oil in water emulsion (82%) Rough parallel disks

 $\gamma \propto t^a$ and $a > 1 \Longrightarrow \ddot{\gamma} < 0$

Solid-liquid transition

Yield stress fluid

« Standard solid »

Usual behavior of solids

Strong localization of the deformation

Shear cell with radial force control

Rheometer

Température control (-40 to +60°C)

Transversal Technical Team: D. Hautemayou – P. Moucheront C. Courrier - C. Mezière

Injection-extrusion

+ Drying + Flow through porous medium

NMR experts:

P. Faure, S. Rodts, D. Courtier-Murias

« Simple » yield stress fluids

Foam

Physical gel

Emulsion

Colloids (repulsive)

Jamming ← → Solids
Fast relaxation :
Soft interactions and Disorder

 \Rightarrow YSF: « Fast self-healing solids »

Apparent flow curve with smooth surface

COLLOIDAL DISPERSIONS

Hydrodynamic interactions +

Thermal agitation:

⇒ Slow relaxation process

In a liquid: interactions between particles

- Van der Waals attraction
- Electrostatic (repulsion)
 - Depletion effect
 - Steric repulsion

 \Rightarrow Weak attractive or repulsive forces

Ex.: Silica, clay, latex, pollens (>10 μm), cement, micelles, microgels, micro-droplets

Attractive suspensions

Yield stress fluids Essentially Newtonian thixotropic

(shear-banding)

Attractive systems

Monolayer of polystyrene beads (3.1mm) along an oil-water interface

Park et al., Langmuir, 2008

Latex beads (15, 75, 105, 135 min after salt addition)

Creep tests with a thixotropic material

Impact of time of rest

Steady state Couette flow after different times of rest

Increases with the time of rest

Bentonite suspension

Simple yield stress fluids

Thixotropic yield stress fluids

Slow restructuring

Park et al., Langmuir, 2008

Flow curve of concentrated attractive systems

