

Laboratoire Leprince-Ringuet 15th May 2017

Unraveling the mystery of Dark Matter's annual modulation

Davide D'Angelo Università degli Studi di Milano and INFN

Energy Budget of the Universe

$$\Omega_x = \frac{\rho_x}{\rho_{f3/05/17}}; \text{ CMB first peak} \Rightarrow \Omega_{\text{tot}} = 1 \text{ (flat)}; \text{ HST } h = 0.71 \pm 0.07 \\ \text{D. D'Angelo} \end{pmatrix}$$

Evidences of Dark Matter

Angelo

Several models proposed

New particle with general characteristics:

- Stable on a cosmological scale
- Neutral
- Massive
- Weakly Interacting

Courtesy M. Cirelli

13/05/17

Experimental approaches to

Dark Matter Halo

- ✓ The solar system rotates within the DM halo
- ✓ Earth experiences the so called "WIMP wind"
- Coming from the direction of the Cygnus constellation

Dark Matter Halo

$$\rho(R_0) = (0.3 \pm 0.1) \frac{GeV}{cm^3} = (0.008 \pm 0.0003) \frac{M_{\odot}}{pc^3}$$

J.Bovy, S Tremaine, APJ 756, 2012

WIMP flux on Earth: ~10⁵ cm⁻² s⁻¹ (assuming M_w=100 GeV)

First order approximation: maxwellian v distribution with $v_{mean} \approx 230$ km/s $v_{escape} \approx 600$ km/s

Direct DM interaction signature

• Interaction type: elastic scattering off nuclei (but other proposed...)

• Signal: nuclear recoil energy

For WIMP masses in the 10 GeV – 1 TeV range: typical recoil energy is 1keV – 50keV

- Interaction cross-section is mostly unknown, though different models have their own estimates in the range $\sigma = 10^{-48} 10^{-41}$ cm²
- Interaction could be Spin Independent (SI) or Spin Dependent (SD).

Very low expected rate ~ 10⁻¹ to 10⁻⁶ events/kg/day

Direct WIMP interaction signature

Direct Dark Matter experiments

The Dark Matter roadmap

The Modulation DM signature

Annual modulation is a <u>model independent</u> signature of Dark Matter interaction

DAMA/LIBRA

- Underground location: LNGS
- Technique: Nal scintillating crystals
- Detector's module: 10kg crystal paired with two 3" PMTs
 - Light guides are used to keep PMTs distant from crystals and reduce background
- Geometry: 5x5 crystal matrix
- Total mass: 250kg
- Energy threshold: 2keV

DAMA/LIBRA

- 1. DAMA/Nal (100kg): 1996-2002
- 2. DAMA/LIBRA (250kg) Phase I : 2003-2010
 - Mass upgrade
- 3. DAMA/LIBRA (250kg) Phase II: 2011-2016
 - New PMTs (low radioactivity, low noise)
- 4. DAMA/LIBRA (250kg) Phase III: 2017-...
 - 1. No light guides

Results announced for 2017

The DAMA/LIBRA modulation

- 13 annual cycles (Dama/Nal + Dama/Libra)
- χ^2 /ndf = 70.4/86
- 9.3σ significance
- (0.998±0.002) year period
- Phase is (144±7) days vs. Exp. DM phase 152.5 days
- Amplitude (0.0112±0.0012) cdp/kg/keV (~ 1.2% of signal)

Interpretation of DAMA/LIBRA results

However there are several assumptions here:

- Astrophysics: DM halo
- Dark matter candidate: WIMP
- ✓ Nature of interaction: elastic and Spin Independent
- ✓ Target of Interaction: nuclei

13/05/17

What about other positive results?

DAMA alternative explanations?

- The rate of cosmogenic muons is known to modulate due to seasonal expansion/contraction of the troposphere which changes the pion/kaon mean free path.
- Could muon-induced background such as nuetrons explain D/L modulation?
- Could there be other explanations of terrestrial origin? (e.g. radon emanation)
- Long standing questions: tens of papers written on the subject.
- No clear conclusion

Combined MACRO+LVD+Borexino muon flux modulation

Why is DAMA/LIBRA robust?

1) All instrumental sources of modulations have been investigated and excluded:

2) Phase: (144±7)d cmp. muon: (182±6)d

- DAMA/LIBRA (D/L) results (and other positive low mass results) are *in tension* with several other experiments
 - but only assuming basic SI WIMP-nucleus interaction and standard DM halo.
- D/L (and CoGeNT) observes DM annual modulation, while all others are counting experiments.
- No other experiments is using Nal as target material.
- Theoretical attempts to let D/L coexist with other results:

NO clear conclusion.

- Attempts to explain D/L in terms of background have been made
 - ⁴⁰K
 - cosmogenic (and environmental) background

NO clear conclusion

D/L has done an excellent job. Strong arguments to sustain the result.
 <u>NO trivial mistake</u>

DAMA/LIBRA (D/L) results (and other positive low mass results) are *in* Low-mas compatibility
H. Hooper, J. Collar, J. Hall, D. McKinsey, C. Kelso, PR D 82 (2010) 123509.
C. Savage et al., JCAP 04 (2009) 010.
P.W. Graham et al., PR D 82 (2010) 063512.

D. Hooper, Phys. Dark Univ. 1 (2012) 1.

• Theoretical attempts to let D/L coexist with other results:

NO clear conclusion.

- Attempts to explain D/L in terms of background have been made
 - ⁴⁰K
 - cosmogenic (and environmental) background

NO clear conclusion

• D/L has done an excellent job. Strong arguments to sustain the result.

- DAMA/LIBRA (D/L) results (and other positive low mass results) are in Instrumental backgrounds (⁴⁰K)
- J. Pradler, B. Singh and I. Yavin, PL B 720 (2013) 399-404
- R. Bernabei et al. (DAMA coll.), (2012) arXiv:1210.6199 and arXiv:1211.6346;
- J. Pradler and I. Yavin, (2012) arXiv:1210.7548.
- No other experiments is using Nal as target material.
- Theoretical attempts to let D/L coexist with other results:

NO clear conclusion.

- Attempts to explain D/L in terms of background have been made
 - ⁴⁰K
 - cosmogenic (and environmental) background

NO clear conclusion

• D/L has done an excellent job. Strong arguments to sustain the result.

- DAMA/LIBRA (D/L) results (and other positive low mass results) are *in*
 - Environmental backgrounds (Cosmic muons)
- J. P. Ralston, (2010) arXiv:1006.5255
- K. Blum, (2011) arXiv:1110.0857
- E. Fernandez-Martinez and R. Mahbubani, JCAP 07 (2012) 029
- S. Chang, J. Pradler and I. Yavin, PR D 85 063505 (2012)
- J. Pradler, (2012) arXiv:1205.3675
- R. Bernabei et al. (DAMA coll.), IJMP A 28 (2013) 1330022
- Attempts to explain D/L in terms of background have been made
 - ⁴⁰K
 - cosmogenic (and environmental) background

NO clear conclusion

• D/L has done an excellent job. Strong arguments to sustain the result.

- DAMA/LIBRA (D/L) results (and other positive low mass results) are in ightarrow*tension* several other experiments
 - but only assuming basic SI WIMP-nucleus interaction and standard DM halo.
- D/L (and CoGeNT) observes DM annual modulation, while all otherships ulletcounting experiments.
- Another Nal measurement is needed! No other experiments is using Nal as target material \bullet
- Theoretical attempts to let D/L coexist \bullet
- Attempts to explain P \mathbf{O}

and have been made

⁴⁰K

a done an excellent job. Strong arguments to sustain the result.

SABRE's four pillars

Model Independent Test

Not just a test but a higher sensitivity stand-alone experiment

Overcoming DAMA/LIBRA: background

⁴⁰K 3keV EC (10% BR) lies where the modulation amplitude is maximal

> Reduce K content in Nal

 \mathbf{H}

Pillar

High Purity Nal powder

- Princeton University and industrial partners (now Sigma-Aldrich) have yielded Astro-Grade powder with higher purity then D/L crystals
- Large effort in Spectrometry (ICP-MS, ICP-OES, AMS) in several labs to measure such low concentrations

	Sigma-	DAMA	DAMA	
Element	Aldrich [ppb]	Powder [ppb]	Crystal [ppb]	
K	3.5 (18)*	100	~ 13	
Rb	0.2	n.a.	< 0.35	
U	< 1.7 (< 10 ⁻³)**	~ 0.02	$0.5 - 7.5 \times 10^{-3}$	
Th	$< 0.5 \ (< 10^{-3})^{**}$	~ 0.02	$0.7 - 10 \times 10^{-3}$	
* Independent measurement				
** Preliminary measurement at PNNL; full validation needed.				
Bernabei et al., NIM A592 (2008) 297-315				
	New batch is 9ppb!			

High Purity Crystals

Overcoming DAMA/LIBRA: background

Pillar 2: Active Background Rejection

- Surround crystals
 with liquid scintillator
- 4π gamma detection
- high efficiency on ⁴⁰K suppression: >80%

Overcoming DAMA/LIBRA: threshold

DAMA/LIBRA energy threshold is set to 2keV due to high PMT noise

Overcoming DAMA/LIBRA: threshold

Important to uncover the 1-2keV region

Pillar 3

Next-generation Photomultiplier Tubes

Pillar 3: PhotoMultiplier Tubes (PMTs)

A 14pe/keV light collection is possible

Pillar 3: PhotoMultiplier Tubes (PMTs)

R&D trying to improve R11065-20:

<u>Replace ceramic stem with individual ceramic pin feedthroughs</u>

er BiAlkali photocathodes:

her Quantum Efficiency

Lower Dark Noise

SABRE Proof-of-Principle (PoP)

- Prototype phase @LNGS with single crystal
- Goal: fully characterize crystal background, detector design, and performance.
- Crystal Trigger: coincidence of opposing PMTs

ORed Dark Matter mode

PoP vessel

- 1.4x1.5m stainless steel vessel
- ~2ton of liquid scintillator (PC+ppo)
- 10 x 8" PMTs
- In a temporary location in Hall B at LNGS

OUND PHYSICS LABORATORY

OVERVIEW

37

PoP shielding

Polyethylene

Lead basement

Space in Hall-C expected June 2017

SABRE: Full Scale Experiment

- Final mass <u>to be</u> <u>determined</u> according to background
- Steel vessel could host up to 7 modules
 = 35kg
- Eventually design larger vessel

13/05/17

Sensitivity

Exposure: 50kg x 3y

ORY

Background: 0.13 cpd/kg/keV_{ee}

<u>4σ power to verify</u> <u>DAMA/LIBRA</u>

[or 6o to refute]

Pillar 4: Double location

Pillar 4

- SABRE Full scale experiment in two different laboratories
- → on opposite hemispheres
- Twin detectors for reduced systematics

Any season-related contribution to the modulation would reverse phase

Underground labs

Stawell gold mine

State of Victoria, ~ 300km west of Melbourne, ~3h drive.

Stawell Underground Physics Laboratory (SUPL)

- Only underground lab in southern hemisphere
- Rock coverage: ~3100m w.e.
- ~ 240 km west of Melbourne
- Decline gold mine (road entrance)
- Background conditions measured (rocks, cosmogenics): similar to LNGS.
- Radon free air from surface
- Construction started in July 2016
- Expected completion: end 2017

DM-Ice

Ann Mod: Same phase if WIMPs, Opposite phase for most seasonal backgrounds No radon or water table fluctuations

At 2450 m depth, constant $T = -20^{\circ} C$ (warmer than a Minnesota winter)

IceCube provides a muon veto, radiopure shielding lab infrastructure

Prototype: 8.5 kg NAIAD crystals (~8 cts/keV/d) at the bottom of two IceCube strings (Dec 2010)

Cosine-100

Merging of DM-ICE and KIMS collaborations Starting data taking now at YangYang (S. Korea) Also implementing liquid scint. veto but only 40cm. Background suppression on ⁴⁰K: ~50% Not a deep location: need active muon tagging

Cosine-100 backgrounds

- Crystal producer: Alpha Spectra
- 8 crystal of different sizes and production batches
- Total mass: ~106kg
- Background levels: x1.5 to x4 DAMA levels
- Designed for a quick verification

Crystals	Powder	Mass (kg)	^{na} tK(⁴⁰ K) (ppb)	²³⁸ U (ppt)	²³² Th (ppt)	α rate (mBq/kg)	Light Yield (pe/keV)
Nal-001 (C1)	AS B	8.3	40.4 ± 2.9	< 0.02	< 3.2	/ 3.29 ± 0.02	15.6 ± 1.4
Nal-002 (C2)	AS C	106 kg 9.2	/ 48.2 ± 2.3	< 0.12	0.5 ± 0.3	1.77 ± 0.01	15.5 ± 1.4
Nal-007 (C3)	AS WimpScint II	9.3	38.1 ± 5.5	< 0.04	0.20 ± 0.01	0.85 ± 0.06	15.2 ± 1.4
AS3 (C4)	AS WimpScint II	18.0					
AS1 (C5)	AS C	18.3					
Nal-011 (C6)	AS WimpScint III	12.5	18.5 ± 3.2	< 0.018	< 0.079	1.03 ± 0.13	16.8 ± 1.2
Nal-012 (C7)	AS WimpScint III	12.5			Ch	ang Hyon Ha	@ichep2016
AS2 (C8)	AS C	18.3					
DAMA		\sim	< 20	0.7 - 10	0.5 - 7.5		

Cosine-100 sensitivity

No confirmation plot provided

Chang Hyon Ha @ichep2016

- Very unlikely to reach Energy threshold <2keV
- A conclusive test may need to wait a further (planned) experiment with 250kg at new Laboratory (to be built)

14/05/17

ANAIS-112

- Laboratorio Subterraneo de Canfranc (LSC) in Spain (Universidad de Zaragoza)
- Experiment under construction: 3x3 crystal matrix for 112kg total mass
- Present background levels (measured in ANAIS-37 prototype): <u>~30ppb ⁴⁰K and 0.7-3mBq/kg in ²¹⁰Pb</u>
- Crystal producer: Alpha Spectra

arXiv:1704.06861

Conclusions

- First point of the roadmap of direct Dark Matter searches: verify the D/L result
 - in tension with other results only under certain assumptions
- A model independent verification requires a new NaI(TI) experiment
- Several players around the world aim at this.
- SABRE aims to deploy two twin detectors at LNGS and SUPL (different emispheres)
 - also able to investigate the Dark Matter modulation with enhanced sensitivity *Thank you for your attention !*

BACKUP SLIDES

Australian National University Swinburne University University of Adelaide University of Melbourne

LNGS & GSSI INFN Rome University of Milano & INFN

Imperial College London

LLNL PNNL Princeton University

Possible additional Backgrounds

lsotope	production	half-life	Energy	decay
²² Na	cosmogenic attivation	2.6y	2.8MeV	β+ + γ
³ Н	intrinsic or neutron attivation	12.3y	18.6keV	β ⁻
¹²⁵	cosmogenic attivation	59.4d	67keV	EC-γ, ¹²⁵ Te X-ray
¹²⁹	cosmogenic attivation	10 ⁷ y	peak at 40keV; up to 194keV	β ⁻ , ¹²⁹ Xe γ
²¹⁰ Pb	Radon	22.3y	16+46keV	β-+γ

→ Radon control

→ Ground transportation and underground storage

SUPL Background measurements summary

	LNGS	<u>Stawell</u>
Neutron Flux (n/s/cm²)	4 x 10 ⁻⁶	7 x 10 ⁻⁶
Gamma-rayflux <3MeV (γ/s/cm ²)	0.73	~1
Rock Hall ²³⁸ U (ppm)	6.8-0.42-0.66	0.64
Rock Hall ²³² Th (ppm)	2.2-0.06-0.06	1.63
Concrete ²³⁸ U (ppm)	1.05	<1.86 (wall) <2.18 (floor)
Concrete ²³² Th (ppm)	0.66	3.84 (wall) 3.49 (floor)
Radon Bq/m ³ (12 day accumulation)	~50	408±40 (free air) 36±5 (comp. air)
Muon Flux (μ/h/m²)	~1.2	to be measured

KIMS (Yangyang Lab, Korea - 2400 mwe)

H.S. Lee,^{1,*} H. Bhang,² J.H. Choi,² S. Choi,² I.S. Hahn,³ E.J. Jeon,⁴ H.W. Joo,² W.G. Kang,⁴ B.H. Kim,² G.B. Kim,² H.J. Kim,⁵ J.H. Kim,³ K.W. Kim,⁹ S.C. Kim,⁹ S.K. Kim,⁹ Y.D. Kim,^{4,6} Y.H. Kim,^{4,7} J.H. Lee,² J.K. Lee,² S.J. Lee,² D.S. Leonard,⁸ J. Li,⁴ J. Li,⁹ Y.J. Li,⁹ X.R. Li,¹⁰ S.S. Myung,² S.L. Olsen,² J.W. Park,² I.S. Seong,² J.H. So,⁴ and Q. Yue⁹

CsI vs NaI

Better PSD than Nal(TI) Less Hygroscopic High cesium radioisotopes

Reduce ¹³⁷Cs in processing (water) ¹³⁴Cs ($\tau_{\frac{1}{2}} = 2$ y) cosmogenic activation Reduce ⁸⁷Rb (in Cs ore) via repeated recrystallization

CDMS

- Location: Soudan Mine in Minnesota, 780m deep
- Detectors: towers of Ge and Si detectors
- Hybrid detectors: bolometers and solid state
- Operating temperature: ~50mK
- CDMS-II mass: $M_{Si} \simeq 1.5 \text{ Kg} + M_{Ge} \simeq 3.8 \text{Kg}$
- SuperCDMS mass: $M_{Si} \sim 1.8 \text{ Kg} + M_{Ge} \sim 5 \text{ Kg}$

The CDMS-II Si result

- Efficiency of electron and gamma background rejection: 99.9%
- WIMP search energy reagion: 10-150 keV
- 3 events pass the event selection criteria
- Expected background: ~0.7 events.
 Probability to be explained as

CoGeNT

- CoGeNT (Coherent Germanium Neutrino Technology)
 - Originally thought for neutrino coherent scattering, now fully a DM project.
- Location: Soudan mine in Minnesota, 780m deep
- Operation years: Dec 2009 May 2013
- Single 440 g PPC (p-Type Point Contact) Germanium detector

The CoGeNT result

CRESST-II Detectors

- Location: LNGS
- CaWO4 scintillating bolometers
- Hybrid detectors: phonons and light
- Operating temperature: 14mK
- 18x 300g detectors: ~6kg total mass

CRESST

CRESST-II Phase-1 2011

- Exposure: 730 kg day
- Signal region: 10-40keV
- Counts: 67 events
- Expected background:

	M1	M2
e/γ -events	8.00 ± 0.05	8.00 ± 0.05
α -events	$11.5^{+2.6}_{-2.3}$	$11.2^{+2.5}_{-2.3}$
Neutron events	$7.5^{+6.3}_{-5.5}$	$9.7^{+6.1}_{-5.1}$
Pb recoils	$15.0^{+5.2}_{-5.1}$	$18.7^{+4.9}_{-4.7}$
Signal events	$29.4_{-7.7}^{+8.6}$	$24.2_{-7.2}^{+8.1}$
m_{χ} [GeV]	25.3	11.6
$\sigma_{\rm WN}$ [pb]	$1.6 \cdot 10^{-6}$	$3.7 \cdot 10^{-5}$
	↑ 4.7σ	1 4.2σ

Eur. Phys. J. C (2012) 72:1971

CRESST-II Phase-2 Results

CRESST-III 24g crystals 100eV threshold Status: commissioning