Peculiar velocities of SN Ia in clusters of galaxies: the impact on distance measurements

P.-F. Léget, **M. V. Pruzhinskaya**, Ph. Gris, A. Ciulli, E. Gangler, L.-P. Says + SNfactory collaboration

postdoctoral researcher at the Laboratoire de Physique Corpusculaire, LSST group, Clermont-Ferrand

April 25, 2017

Introduction

Data

Nearby Supernova Factory data Host clusters data

Results

Hubble diagram fitting Luminosity dispersion of SN Ia inside the galaxy clusters

Conclusions

Introduction

Cosmology with SN Ia

- "luminosity distance-redshift" relation
- standardization of SN Ia (Rust 1974; Pskovskii 1977, 1984; Phillips 1993; Phillips et al. 1999; Riess et al. 1996; Perlmutter et al. 1997, 1999; Wang et al. 2003; Guy et al. 2005, 2007; Jha et al. 2007)

 $M = M_B - \alpha X 1 + \beta C$

3/18

P.-F. Léget et al. SN Ia in clusters of galaxies: the impact on distance measurements

Introduction

Cosmology with SN Ia

► Is the uncertainty on the redshift negligible?

 $(1 + z_{obs}) = (1 + z_c)(1 + z_d)$

- For low and intermediate redshifts (z < 0.2):
 - ▶ to remove all SNe with z < 0.015 from the Hubble diagram (Astier et al. 2006; Wood-Vasey et al. 2007)
 - high intrinsic velocity dispersion (300 km/s, Amanullah et al. 2010)
 - velocity maps of the nearby Universe (150 km/s, Hudson et al., 2004; Conley et al., 2011; Betoule et al., 2014)

Coma cluster

$$\sigma_V = 1038 \text{ km/s}$$

$$\sigma_m = \frac{5 \sigma_V}{cz \ln 10}$$

SN Ia in clusters

Blakeslee et al. 1999; Radburn-Smith et al. 2004 (Virgo, Fornax)

How to estimate better the impact of peculiar velocities on the distance measurements?

- to match the host galaxies of SNe Ia with known clusters of galaxies
- ► to use the host cluster redshift instead of the host galaxy redshift

Nearby Supernova Factory data Host clusters data

Nearby Supernova Factory data

- ► 145 SN Ia (2004 2009)
- ► The sample contains the objects with good final references and properly measured light-curve parameters, including quality cuts suggested by Guy et al. (2010).
- ▶ m_B^* , X_1 , and *C* are estimated with the SALT2.4 lightcurve fitter (Guy et al. 2007, Betoule et al. 2014).

Nearby Supernova Factory data Host clusters data

Galaxy clusters

Methods for identifying the clusters:

- over-density regions on the images
- red sequence method
- diffused X-ray emission
- Sunyaev-Zel'dovich effect

SIMBAD database

- only clusters of galaxies (exclude groups of galaxies)
- ► *d* < 1 Mpc
- $\Delta z < 0.01$

A2589

Host clusters data

	1						1	1
SN name	Galaxy cluster	MCXC name	$R_{200}(Mpc)$	Zsn	Zcl	zer	N_{gal}	Source
PTF09foz	A0087	in BAX	2.01	0.0533	0.0539	0.0003	62	SDSS
SN2004gc	WBL 113		1.24	0.032	0.0302	0.0010	8	[3-7]
SN2007ng	A0119	J0056.3-0112	1.43	0.0439	0.0430	0.0003	132	SDSS
SN2008ec	ZwCl 2259+0746		0.39	0.015	0.0150	0.0004	5	[14]
SN2009hi	A2589	J2323.8+1648	1.33	0.0399	0.0402	0.0003	58	[10]
SNF20051003-004	RXJ0228.2+2811	J0228.1+2811	0.92	0.0337	0.0340	0.0015	2	[19]
SNF20051113-000	[DEM94] 042751.5-174203		1.00	0.0826	0.0815	0.0012	4	[11]
SNF20060609-002	A2151a	J1604.5+1743	1.16	0.0399	0.0366	0.0002	175	SDSS
SNF20061020-000	A0076	J0040.0+0649	1.06	0.0379	0.0377	0.0009	7	[17]
SNF20061021-003	[WHL2012]J003555.3+071306		0.77	0.0615	0.0580	0.0013	2	[12]
SNF20061111-002	RXC J2306.8-1324	J2306.8-1324	1.08	0.0677	0.0647	0.0018	2	[18]
SNF20070403-001	[SPD2011] 27349		0.96	0.0815	0.0797	0.0002	23	SDSS
SNF20070417-002	[WHL2012] J132045.4+211627		1.27	0.0904	0.0903	0.0005	35	SDSS
SNF20070712-000	ZwCl 1743+5528		1.37	0.0298	0.0290	0.0016	4	[20]
SNF20080512-010	[WHL2012] J161104.1+522701		1.50	0.0632	0.0633	0.0002	30	SDSS
SNF20080514-002	RXC J1329.5+1147	J1329.5+1147	0.77	0.0229	0.0237	0.0002	46	SDSS
SNF20080612-003	RXC J1615.5+1927	J1615.5+1927	0.76	0.0328	0.0318	0.0010	3	[21]
SNF20080623-001	ZwCl8338	J1811.0+4954	1.17	0.0448	0.0495	0.0003	55	[10]
SNF20080731-000	ZwCl 1742+3306	J1744.2+3259	1.55	0.0755	0.0755	0.0026	2	[22]
SNF20080803-000	[YSS2008] 510		0.48	0.0568	0.0568	0.0007	14	SDSS

Calculation of cluster redshift:

Red: z_{cl} and its dispersion are estimated as the average and the standard deviation of the redshift distribution of cluster members

• Blue:
$$\sigma_V \sim \sqrt{\frac{GM_{200}}{R_{200}}}, \sigma_V \sim 10R_{200}H_0 \Longrightarrow z_{err}^{cl} = \frac{\sigma_V}{\sqrt{N_{gal}}}$$

Hubble diagram fitting Luminosity dispersion of SN Ia inside the galaxy clusters

Hubble diagram

 $wRMS = 0.150^{m}$ (without correction); $wRMS = 0.149^{m}$ (with correction) The significance of improvement is 1.7- σ

Hubble diagram fitting Luminosity dispersion of SN Ia inside the galaxy clusters

Confidence contours for nuisance parameters

P.-F. Léget et al. SN Ia in clusters of galaxies: the impact on distance measurements

11/18

Hubble diagram fitting Luminosity dispersion of SN Ia inside the galaxy clusters

Luminosity dispersion of SN Ia inside the galaxy clusters

The wRMS (0.121^m) for SNe inside the clusters even before correction is smaller than wRMS for the SNe outside the clusters $(wRMS=0.153^m)$

Are SNe Ia inside the galaxy clusters more standard?

Hubble diagram fitting Luminosity dispersion of SN Ia inside the galaxy clusters

Luminosity dispersion of SN Ia inside the galaxy clusters

Two separate Hubble diagram fits $wRMS = 0.098^m$ (in clusters); $wRMS = 0.154^m$ (outside clusters)

Hubble diagram fitting Luminosity dispersion of SN Ia inside the galaxy clusters

Stretch and color distribution

Hubble diagram fitting Luminosity dispersion of SN Ia inside the galaxy clusters

The environment of SN Ia

The influence of the environmental effects on the SN Ia intrinsic luminosity was proved in many works:

- host galaxy morphology and stellar population age (Hamuy et al. 1995,1996,2000; Riess et al. 1999; Sullivan 2003; Hicken et al. 2009; Hill et al. 2016; Henne et al. 2017)
- ▶ galocentric distance (Sullivan et al. 2003; Hill et al. 2016)
- star-formation rate (Sullivan et al. 2006; Neill et al. 2009; Lampeitl et al. 2010; Sullivan et al. 2010; Smith et al. 2012; Johansson 2013)
- local star-formation rate (1-3 kpc; Rigault et al. 2013; Roman et al. (in prep.))
- stellar mass of host galaxy (Kelly et al. 2010; Sullivan et al. 2010; Johansson 2013)
- ▶ host metallicity (Gallagher et al. 2005,2008; Howell et al. 2009)

Hubble diagram fitting Luminosity dispersion of SN Ia inside the galaxy clusters

The properties of host galaxies of SNe Ia in clusters

SN name	Host name	Host	log(sSFR)	$\log(M_{stellar})$
		type		e · bicitai ·
SNF20070403-001	2MASXJ10054419+1819037	Sbc	-10.07	11.01
SN2007nq	UGC 595	E	-12.57	12.12
SNF20080914-001	2MASXJ04572695-0004153	Sbc	-	-
SN2006X	M 100	Sc	-	-
SNF20080514-002	UGC 8472	SO	-9.722	11.12
SN2009hi	NGC 7647	E	-12.30	11.51
SNF20061020-000	2MASXJ00410521+0647439	Sab	-10.08	10.26
SNF20051003-004	NSFJ022743.32+281037.6	-	-10.33	9.005
SNF20060609-002	MCG+03-41-072	Sbc	-9.586	10.19
SN2008ec	NGC 7469	Sa	-10.04	10.84
SNF20080731-000	-	-	-12.22	10.14
SN2004gc	2MASXJ05214980+0640372	E-S0	-11.79	10.31
SNF20061111-002	-	-	-9.300	9.016
SNF20080803-000	2MASXJ17000690+2307533	Sab	-9.934	11.26
SNF20080623-001	WINGSJ181139.70+501057.1	-	-10.05	8.857
PTF09foz	2MASXJ00421192-0952551	SO	-11.34	10.49
SNF20070417-002	2MASXJ13205225+2119452	E	-11.03	10.85
SNF20080512-010	UGC 10261	E-S0	-12.26	11.51
SNF20051113-000	-	-	-8.839	7.506
SNF20061021-003	2MASXJ00361351+0710004	S	-8.890	11.17
SNF20080612-003	2MASXJ16152860+1913344	E	-9.348	10.17
SNF20070712-000	2MASXJ17461117+5516000	E	-10.61	10.05

Conclusions

- We studied how the peculiar velocities of SNe Ia in galaxy clusters affect the distance measurements by matching 145 SNFACTORY supernovae with known clusters of galaxies.
- The applied technique allowed to decrease the spread on the Hubble diagram. The *wRMS* is improved from 0.150^m to 0.149^m with $1.7-\sigma$ significance.
- For the SN Ia in clusters *wRMS* is improved from 0.121^m to 0.103^m with 2.4- σ significance.
- SNe Ia in clusters have smaller dispersion on the Hubble diagram than ones outside the clusters, i.e. represent more standard subclass of supernovae (1.8-σ significance). The separate fit of two subsamples shows the difference in α, β, and M_B parameters.
- ► The described effect influences the distance measurements in the nearby Universe (*z* < 0.1) and has to be taken into account in future cosmological surveys.

Merci pour votre attention !

18/18