The Universe is our lab

Euclid will map 15 000 deg² from space to "see" the dark matter distribution and constrain the DE equation of state.

AdVIRGO is a gravitational wave detector in Italy, which started operating in 2017. It is a massive Michelson laser interferometer made of two orthogonal arms, each three kilometers long.

CTA will be one order of mag. more sensitive, have an extended energy range, a better angular resolution and an improved capability to detect transient sources.

Dark matter

Dark matter: where is it ?

MACSJ2243.3-0935

lensing & LSS with LSST (LAPP, LPSC)

clusters of galaxies with NIKA2, KISS, Euclid, LSST (LPSC)

Reconstruction of the matter gravitational potential using the shear

Work using CFHT data processed with the LSST stack (LAPP, LPSC)

Dark matter: what is it ?

- direct detection with MIMAC/Cygnus (LPSC / LSM) 1m³, toward 50m³
- indirect detection with photons with **CTA** (LAPP)
- gamma and cosmic-rays background understanding (LAPP/LAPTh/LPSC)

astro-ph 1609.08091 <σv> limit at 95% CL for the line scan between 100 GeV and 2 TeV using H.E.S.S. and H.E.S.S.II data + CLUMPY package

Extreme state of the matter

Active Galactic Nuclei with $\ensuremath{\textbf{CTA}}\xspace(\ensuremath{\textbf{LAPP}}\xspace)$

Black holes and neutron stars with $\textbf{AdVirgo}\xspace$ (then ET)

Origin of the cosmic-rays with **Auger** & **CTA** (LPSC, LAPP)

Inflation with CMB ${\bf E4}~({\rm LPSC},\,{\rm LAPTh})$

Loop quantum cosmology (LPSC)

Synthesis of astro/cosmo activities

	2012	2019	2029
СМВ	Planck	NIKA / NIKA2	E4
galaxy survey	LSST	Euclid & LSST	
cosmic rays	AMS	Auger/Auger-Prime	
gamma photons	HESS/HESSII	CTA	
DM direct detection	MIMAC	MIMAC-Cygnus	
gravitational waves	Virgo	AdVirgo	Einstein telescope
phenomenology	dark matter & cosmic rays		
66	quantum gravity & cosmology		

yellow = 1 ENIGMASS lab green = 2 ENIGMASS labs blue = 1 ENIGMASS lab+ IPAG

it is only a scheme !

What's ending ?

- Planck (2016)
- AMS (detector still at work but teams move on to other subjects in 2018/2019)
- HESS/HESSII (probably ~ 2019)

What's in progress?

- SZ observations with NIKA then with NIKA2 from ~ 2010 up to ~ 2022 + KISS in Spain starting in ~ 2018
- MIMAC @ LSM and MIMAC Cygnus @ LSM 1 m³ + China 1 m³
- phenomenology on quantum gravity & cosmology
- phenomenology on dark matter (& RC ?)

Which new data?

- AugerPrime (upgrade of Auger detectors, new in ENIGMASS next generation)
- CTA (successor of HESS/HESSII + team from AMS/LAPP; observations in ~ 2018/19 but already in construction, tests, simulations ...)
- LSST (survey will start in 2022 but already in construction, tests, simulations ...; new team now in LAPP)
- Euclid (observations in 2021 but already in tests, simulations ...)

What will be new but we don't know what (yet)

- Einstein Telescope (next generation after AdVirgo, underground detector, 3 arms of 10 kms, but place, exact design, money etc to define & find)
- E4 (CMB after Planck to detect primordial B-modes; the CORE satellite project discarded: what to do now ? French/European meetings & groups have to draw a strategy using ground-based telescopes & balloon in the framework of the US S4 effort, participations to other space experiments for the next 15 years).