

Report from Collider & Particle Physics Workpackage

Tetiana Berger-Hryn'ova

ENIGMASS General Meeting 28/04/2017

Main Axes

Theory: **Precision calculations** nEDM for SM and new physics processes, model building, development of tools for LPSC interpretation of the LHC results, new ideas LAPTh for searches & experiments. LAPP

Hightlights 2012-2017

Higgs Discovery 2012

Add Higgs Discovery plot + Higgs Measurements

No New Physics yet 2017

Our searches: $\gamma\gamma$, γ +MET, II, tb, tt, etc.

ATLAS Exotics Searches* - 95% CL Exclusion

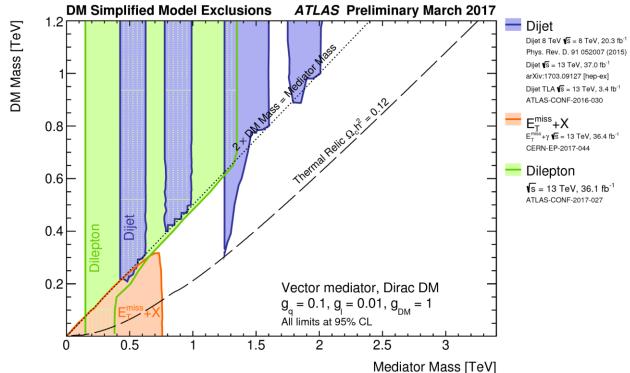
Status: August 2016

ATLAS Preliminary $\sqrt{s} = 8, 13 \text{ TeV}$

 $\int \mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1}$

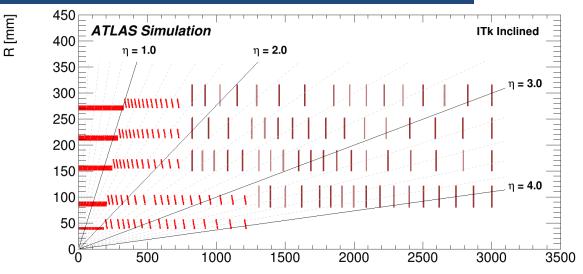
	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	5	20.0,10	Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \ell\ell \\ \text{ADD QBH} \to \ell q \\ \text{ADD QBH} \\ \text{ADD QBH } \\ \text{ADD BH multijet} \\ \text{RS1 } G_{KK} \to \ell\ell \\ \text{RS1 } G_{KK} \to \gamma\gamma \\ \text{Bulk } \text{RS } G_{KK} \to \gammaW \to qq\ell\nu \\ \text{Bulk } \text{RS } G_{KK} \to \tauH \to bbbb \\ \text{Bulk } \text{RS } G_{KK} \to \tautt \\ \text{2UED} / \text{RPP} \end{array}$	$ \begin{array}{c} - \\ 2 e, \mu \\ 1 e, \mu \\ - \\ 2 e, \mu \\ 2 \gamma \\ 1 e, \mu \\ - \\ 1 e, \mu \\ 1 e, \mu \\ \end{array} $	$ \geq 1 j - 1 j 2 j \geq 2 j \geq 3 j - 1 J 4 b \geq 1 b, \geq 1 J / 2 \geq 2 b, \geq 4 $		3.2 20.3 15.7 3.2 3.6 20.3 3.2 13.2 13.3 20.3 3.2	Mp 6,58 TeV Ms 4.7 TeV Min 5.2 TeV Min 8.7 TeV Min 9.55 TeV GKK mass 2.68 TeV GKK mass 3.2 TeV GKK mass 2.2 TeV KK mass 2.2 TeV KK mass 1.46 TeV	$\begin{array}{l} n = 2 \\ n = 3 \ \text{HLZ} \\ n = 6 \\ n = 6, \ M_D = 3 \ \text{TeV}, \ \text{rot} \ \text{BH} \\ n = 6, \ M_D = 3 \ \text{TeV}, \ \text{rot} \ \text{BH} \\ k/\overline{M}_{Pl} = 0.1 \\ k/\overline{M}_{Pl} = 0.1 \\ k/\overline{M}_{Pl} = 1.0 \\ BR = 0.925 \\ \text{Tier} (1, 1), \ \text{BR}(A^{(1,1)} \to tt) = 1 \end{array}$	1604.07773 1407.2410 1311.2006 ATLAS-CONF-2016-069 1606.02265 1512.02586 1405.4123 1606.03833 ATLAS-CONF-2016-062 ATLAS-CONF-2016-049 1505.07018 ATLAS-CONF-2016-013
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{SSM } W' \to \ell\nu \\ \text{HVT } W' \to WZ \to qqv\nu \text{ model } A \\ \text{HVT } W' \to WZ \to qqq \text{ model } B \\ \text{HVT } W' \to WH/ZH \text{ model } B \\ \text{LRSM } W'_R \to tb \\ \text{LRSM } W'_R \to tb \end{array}$		- 2 b - 1 J 2 J el 2 b, 0-1 j ≥ 1 b, 1 J	- Yes Yes - Yes -	13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3	Z' mass 4.05 TeV Z' mass 2.02 TeV Z' mass 1.5 TeV W' mass 4.74 TeV W' mass 2.4 TeV V' mass 3.0 TeV V' mass 2.31 TeV W' mass 1.92 TeV W' mass 1.76 TeV	$egin{array}{lll} g_V &= 1 \ g_V &= 3 \ g_V &= 3 \end{array}$	ATLAS-CONF-2016-045 1502.07177 1603.08791 ATLAS-CONF-2016-061 ATLAS-CONF-2016-082 ATLAS-CONF-2016-055 1607.05621 1410.4103 1408.0886
CI	Cl qqqq Cl ℓℓqq Cl uutt	_ 2 e,μ 2(SS)/≥3 e,	2j ,µ≥1b,≥1j	_ _ Yes	15.7 3.2 20.3	Λ Λ Λ 4.9 TeV	19.9 TeV $\eta_{LL} = -1$ 25.2 TeV $\eta_{LL} = -1$ $ C_{RR} = 1$	ATLAS-CONF-2016-069 1607.03669 1504.04605
MQ	Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM) $ZZ_{\chi\chi}$ EFT (Dirac DM)	0 e, μ 0 e, μ, 1 γ 0 e, μ	≥1j 1j 1J,≤1j	Yes Yes Yes	3.2 3.2 3.2	ma 1.0 TeV ma 710 GeV M, 550 GeV	$\begin{array}{l} g_q{=}0.25,g_\chi{=}1.0,m(\chi)<250\;{\rm GeV}\\ g_q{=}0.25,g_\chi{=}1.0,m(\chi)<150\;{\rm GeV}\\ m(\chi)<150\;{\rm GeV} \end{array}$	1604.07773 1604.01306 ATLAS-CONF-2015-080
ГQ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	– – Yes	3.2 3.2 20.3	LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV	$egin{array}{ll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 0 \end{array}$	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ QQ \rightarrow WqWq \\ VLQ \ T_{5/3} \ T_{5/3} \rightarrow WtWt \end{array} $	1 <i>e</i> , μ 1 <i>e</i> , μ 1 <i>e</i> , μ 2/≥3 <i>e</i> , μ 1 <i>e</i> , μ 2(SS)/≥3 <i>e</i> ,	$\begin{array}{l} \geq 2 \ {\rm b}, \geq 3 \\ \geq 1 \ {\rm b}, \geq 3 \\ \geq 2 \ {\rm b}, \geq 3 \\ \geq 2/{\geq}1 \ {\rm b} \\ \geq 4 \ {\rm j} \\ , \mu \geq 1 \ {\rm b}, \geq 1 \ {\rm j} \end{array}$	j Yes j Yes – Yes	20.3 20.3 20.3 20.3 20.3 20.3 3.2	T mass 855 GeV Y mass 770 GeV B mass 735 GeV B mass 755 GeV Q mass 690 GeV T _{5/3} mass 990 GeV	T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 ATLAS-CONF-2016-032
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton l^* Excited lepton v^*	1γ _ 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1j 2j 1b,1j 1b,2-0j –	– – Yes –	3.2 15.7 8.8 20.3 20.3 20.3	q* mass 4.4 TeV q* mass 5.6 TeV b* mass 2.3 TeV b* mass 1.5 TeV c* mass 3.0 TeV v* mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	1512.05910 ATLAS-CONF-2016-069 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow ee$ Higgs triplet $H^{\pm\pm} \rightarrow \ell_T$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$1 e, \mu, 1 \gamma$ $2 e, \mu$ $2 e (SS)$ $3 e, \mu, \tau$ $1 e, \mu$ $-$ $-$ $-$ $= 8 \text{ TeV}$	2 j - 1 b -	Yes Yes 3 TeV	20.3 20.3 13.9 20.3 20.3 20.3 7.0	ar mass 960 GeV N ⁰ mass 2.0 TeV H ^{±±} mass 570 GeV H ^{±±} mass 400 GeV spin-1 Invisible particle mass 657 GeV monopole mass 785 GeV 1.34 TeV 10 ⁻¹ 1 1	$\begin{split} m(W_R) &= 2.4 \text{ TeV, no mixing} \\ \text{DY production, BR}(H_L^{zz} \to ee) = 1 \\ \text{DY production, BR}(H_L^{zz} \to \ell\tau) = 1 \\ a_{\text{gen-res}} &= 0.2 \\ \text{DY production, } q = 5e \\ \text{DY production, } g = 1 \\ g_0, \text{ spin } 1/2 \\ 0 \\ \hline \textbf{Mass scale [TeV]} \end{split}$	1407.8150 1506.06020 ATLAS-CONF-2016-051 1411.2921 1410.5404 1504.04188 1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded.


†Small-radius (large-radius) jets are denoted by the letter j (J).

Searches will continue!

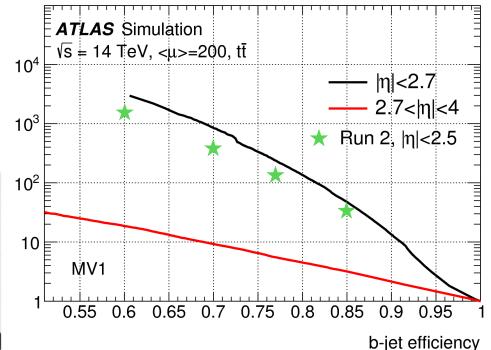
T. D.


Searches Theory (& Experiment)

- BSM phenomenology: SUSY@NLO, Composite Higgs, Dark Matter...
- Tools: SModels, MadAnalysis5, Lilith...
- Forums: Interpretation of the LHC results for BSM studies, Dark Matter WG

ATLAS Tracking Upgrade (2024-25)

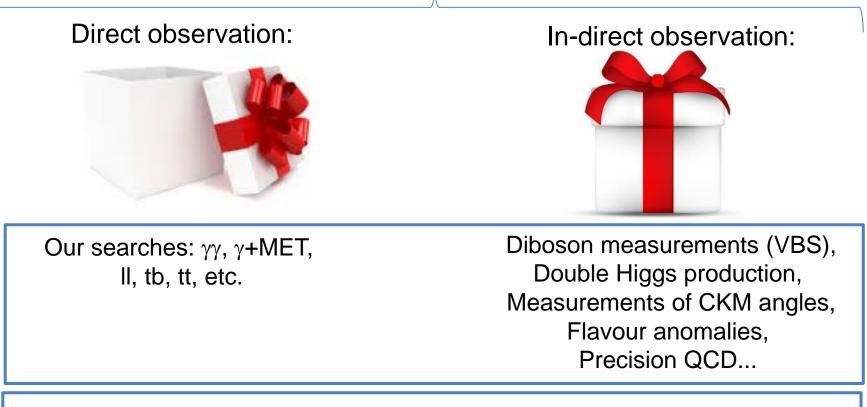
Light-jet rejection



Goals: improved tracking performance in higher pile-up & radiation environment

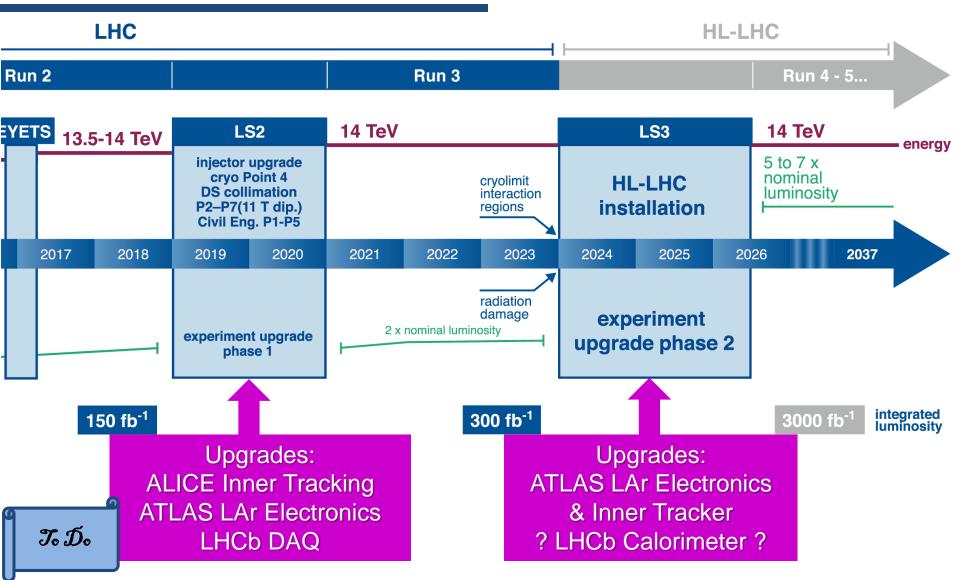
Inclined Layout Idea initiated at LAPP: less material, less silicone

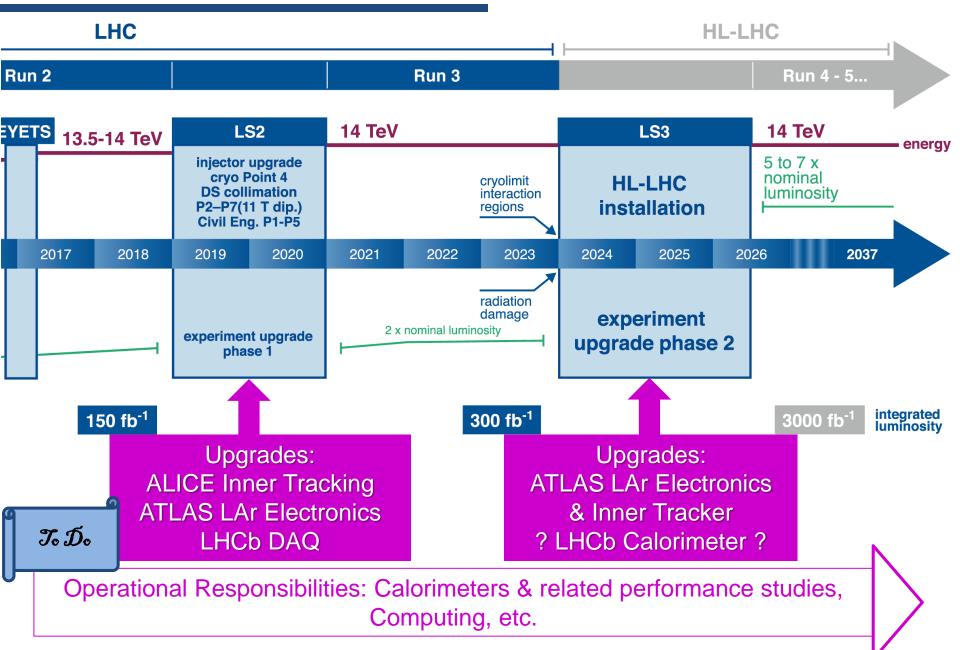
LAPP & LPSC: Layout Simulation, Thermal & Mechanical tests, Electronics (Services),.. Future construction



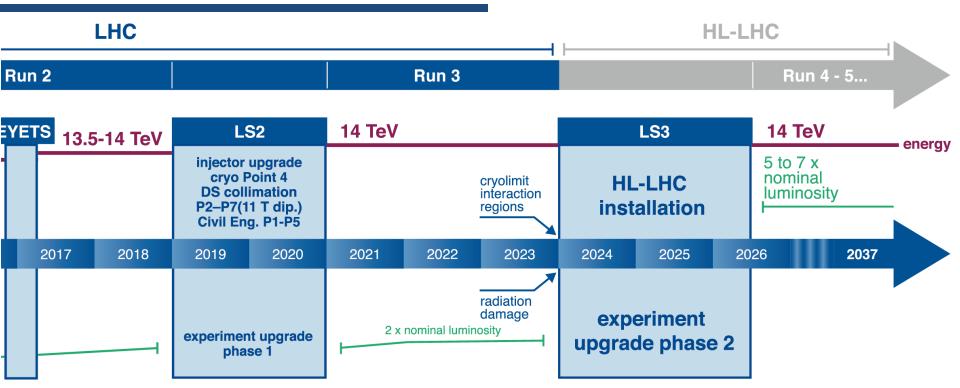
Next 10 years

Beyond Standard Model


Search for any deviations from Standard Model predictions


-HC

Measurrement of neutron electric dipole moment, Measurement of magnetic resonant transitions between neutron quantum states in the gravity field, etc... Future collider experiements.


LHC Timeline

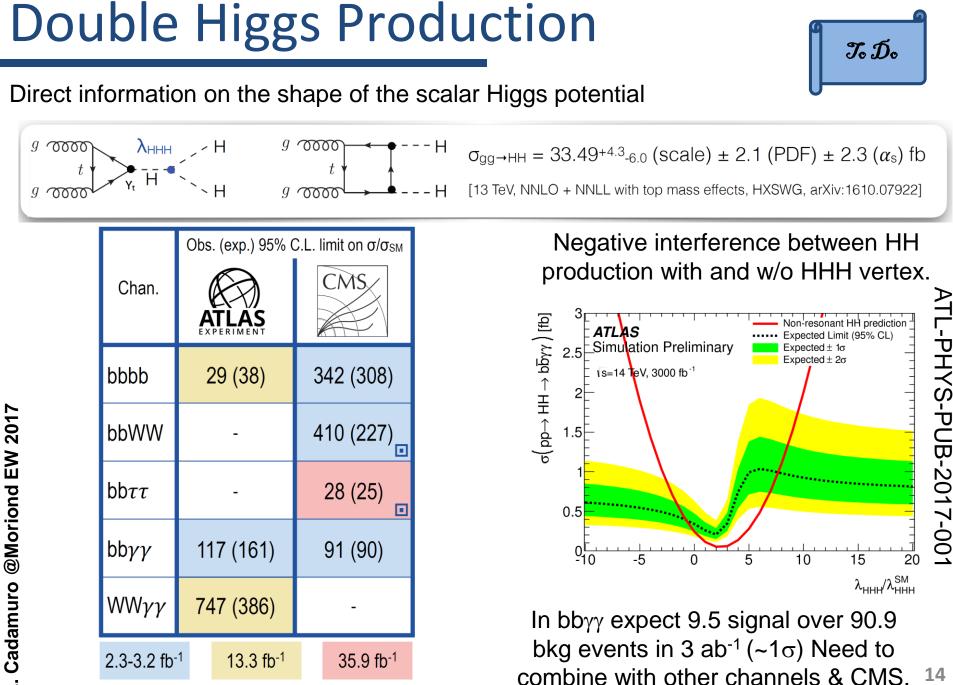
LHC Timeline

LHC Timeline

	ATLAS	LHCb	ALICE (HI)
2017	40fb ⁻¹	5fb ⁻¹	1nb ⁻¹
2019	150fb ⁻¹	8fb ⁻¹	
2024	300fb ⁻¹	28fb ⁻¹	
2028	1000fb ⁻¹	42fb ⁻¹	10nb ⁻¹

SM EFT

• SM scale ~ v = 246 GeV, no BSM physics seen below Λ ~ 1 TeV \Rightarrow parameterize the BSM using an EFT extension of the SM


$$L = L_{SM}^{(d \le 4)} + \frac{1}{\Lambda^2} \sum_{i} c_i^{(d=6)} O_i^{(d=6)} + \frac{1}{\Lambda^4} \sum_{i} c_i^{(d=8)} O_i^{(d=8)} + \dots$$

 Usually(*) leading effect from interference of d=6 and SM ~(v/Λ)² and can neglect d≥8 and |c^(d=6)|².

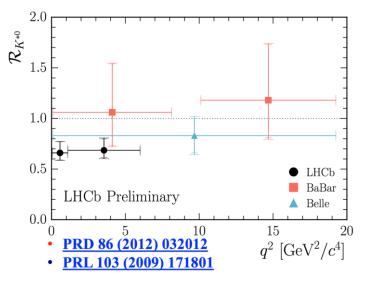
\Rightarrow Report experimental constraints on the $\mathbf{c}_{_{\mathrm{i}}}$, compare to model predictions

- Straightforward to extend to higher orders in SM couplings
- Many operators: 2499 for n_{gen}=3
 - Higgs operators
 Other EW operators (TGCs)
 4-fermion operators (flavour measurements)

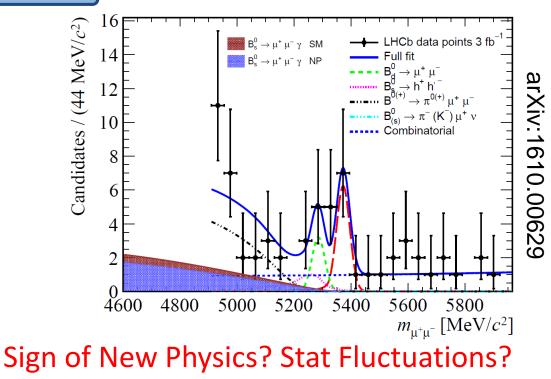
To Do

: Test of anomalous HH couplings

14


Flavour Anomalies

To Do


LHCb reported 2-3 sigma anomalies in various

b \rightarrow sll measurements (BRs, angular observables, ...) and in b \rightarrow c τ v. FCNC sensitive to BSM contributions through the loops.

BR_{obs}(B_s→µµ)/BR_{SM}(B_s→µµ)=0.76^{+0.20}_{-0.17} ⇒ More precise measurement needed.

BR($B_s \rightarrow \mu \mu \gamma$) ~5 BR($B_s \rightarrow \mu \mu$), not seen yet. Also interesting to see $B_s \rightarrow e \mu \gamma$.

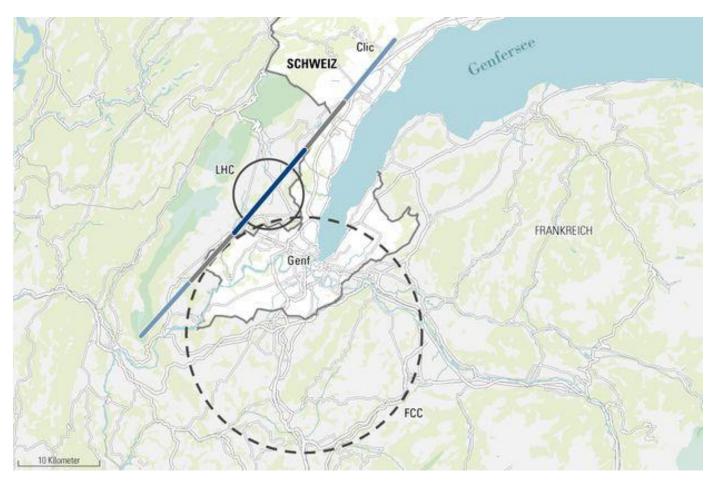
QCD effects not fully accounted for?

Probing QCD with Quark Gluon Plasma (QGP)

- Study of QGP in **Pb-Pb**: new constraints on strong interaction
- Study of **pp** collisions: baseline for the QGP study and for comparisons with QCD calculations;
- **p-Pb** collisions: cold nuclear effect

ALICE @ LPSC:

- Inclusive jets, jet-jet and photon-hadron/jet correlations measurements
- \rightarrow parton fragmentation related observables

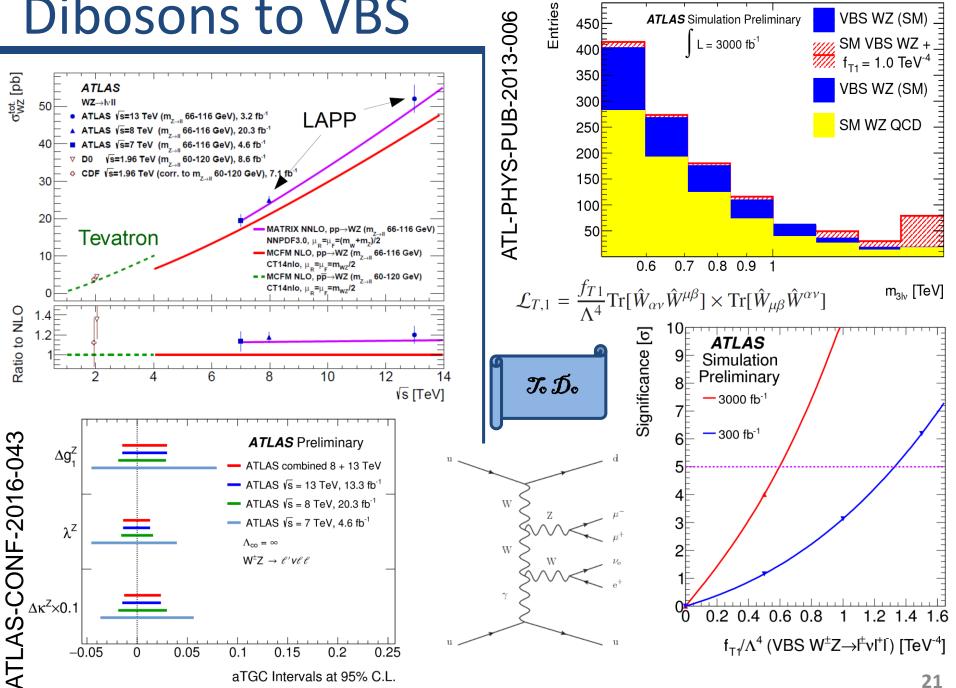


- \rightarrow in-medium modification of parton energy loss and energy redistribution at ~ low p_T
- New b-tagging methods for heavy flavour identification in jets:
- → use to study quark flavor dependence of energy loss in QGP: test dead cone effect prediction

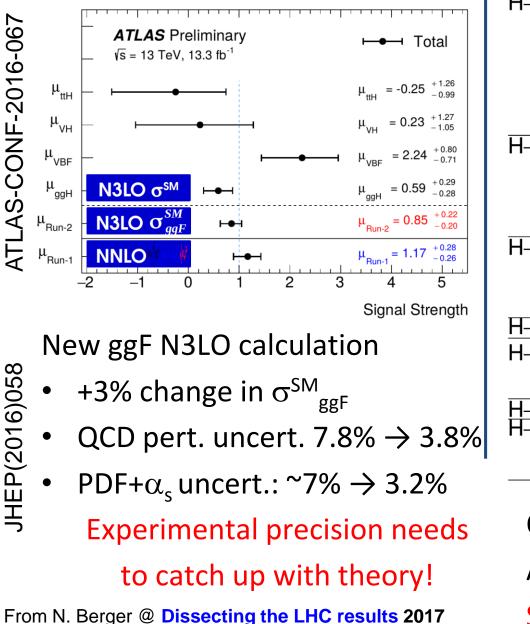
Beyond LHC: nEDM

Beyond LHC: GRANIT

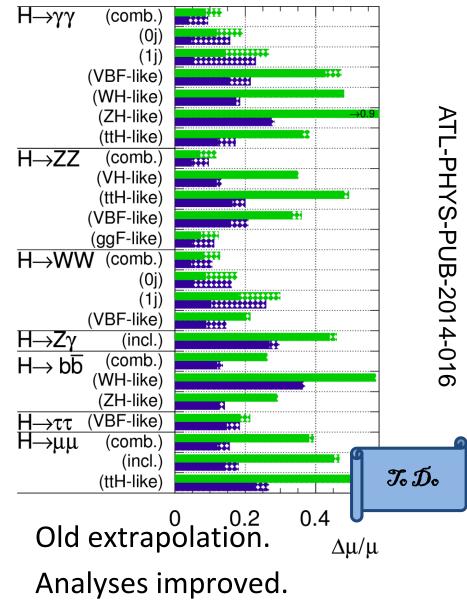
Beyond LHC: new colliders


Small ILC groups @ LAPP & LPSC

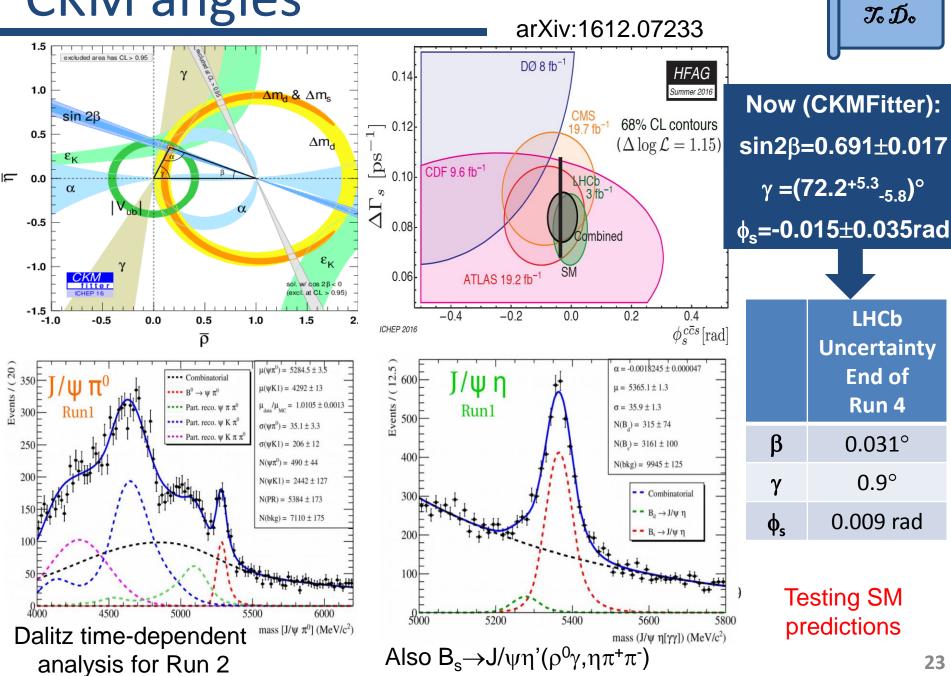
Following developments on FCC, CLIC and ILC.


Backup

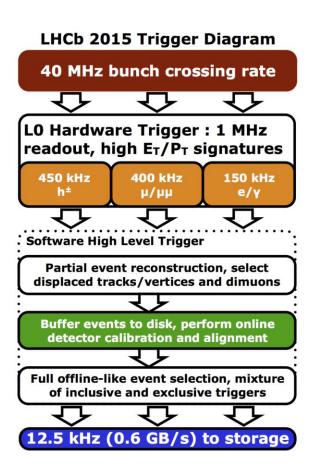
2

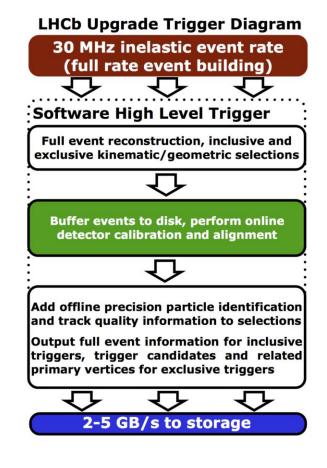

Dibosons to VBS

$H \rightarrow \gamma \gamma$ couplings



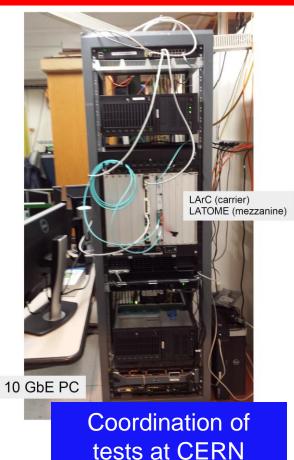
ATLAS Simulation Preliminary $\sqrt{s} = 14 \text{ TeV}: \int \text{Ldt}=300 \text{ fb}^{-1}; \int \text{Ldt}=3000 \text{ fb}^{-1}$


Sizable theory uncertainties! 22

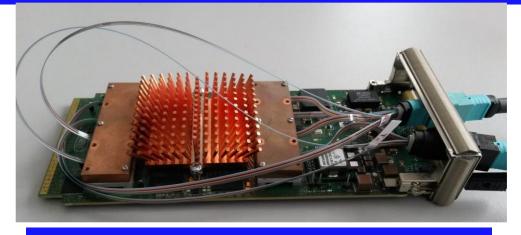

CKM angles

LHCb DAQ Upgrade (2019-20)

Goal: Remove Hardware Trigger



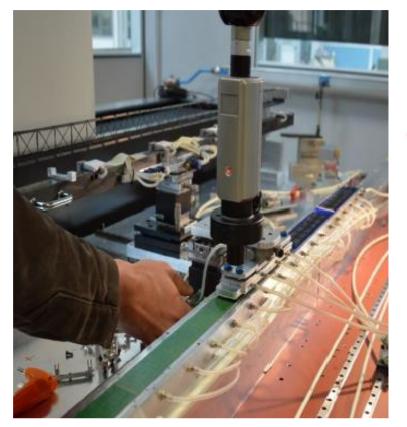
LAPP coordinates firmware development for Prototype Readout Board Used for Event Building


Potential participation in the LHCb Calorimeter upgrade 2024-2025

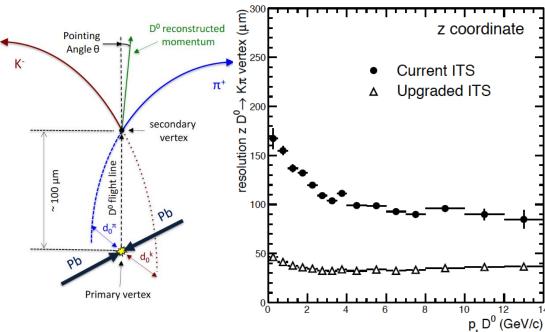
ATLAS LAr Calorimeter Upgrade (2019-20)

Goal: increase calorimeter hardware trigger granularity and to do digitisation at 40 MHz

LAPP developed a fast and dense processing unit (E_T calculation, LHC bunch crossing identification etc.)


LAPP coordinates firmware development

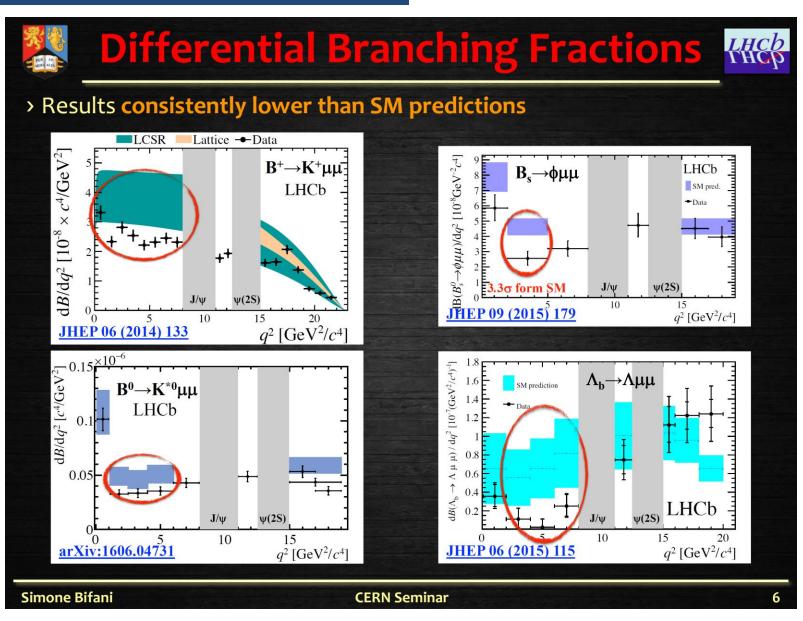
IPMC : ATCA controller card developed at LAPP



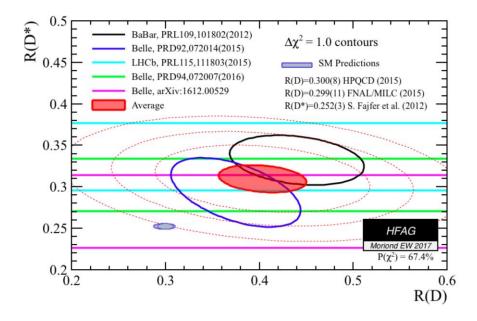
ATLAS LAr Electronics upgrade 2024-2025: back-end & calibration card

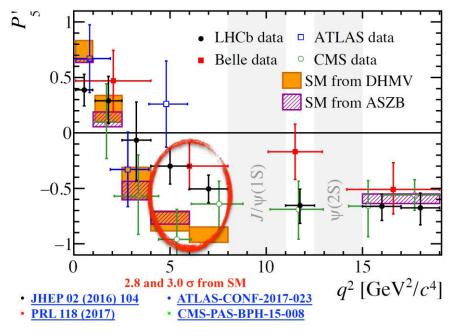
ALICE Tracking Upgrade (2019-20)

Goals: improve tracking performance

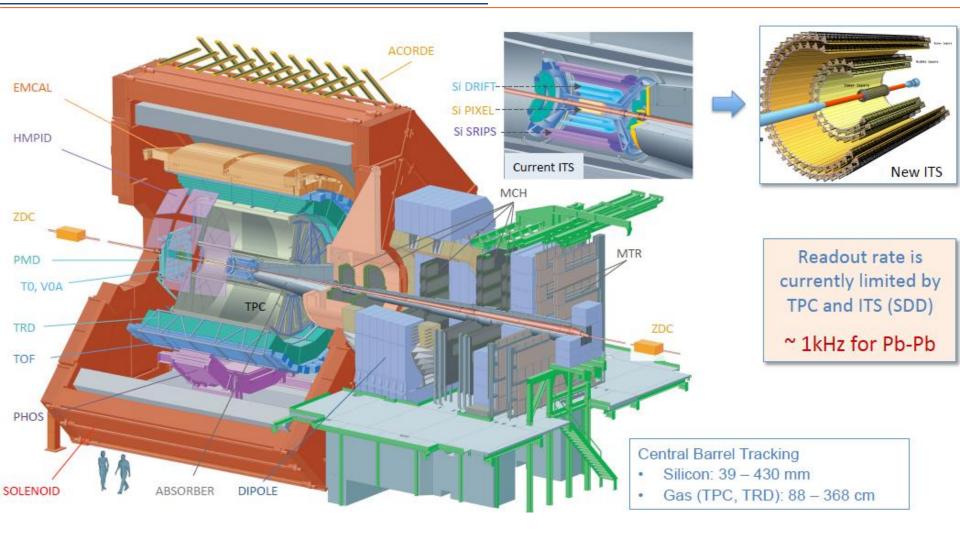

LPSC: Construction of manufacturing molds for staves. Design and production of the Middle Barrel staves assembly tool.

Potential Synergy with ATLAS Tracking Upgrade in LPSC


Indirect Searches = Measurements


วเลกตล	ard Model Total Produ			ments March 2017	∫£ dt [fb ^{−1}]	Reference
рр	$\sigma = 96.07 \pm 0.18 \pm 0.91$ mb (data) COMPETE HPR1R2 (theory)				50×10 ⁻⁸	PLB 761 (2016) 158
РР	$\sigma = 95.35 \pm 0.38 \pm 1.3$ mb (data) COMPETE HPR1R2 (theory)		0	•	8×10 ⁻⁸	Nucl. Phys. B, 486-548 (201
W	$\sigma = 190.1 \pm 0.2 \pm 6.4$ nb (data) DYNNLO + CT14NNLO (theory)		Þ	l þ	0.081	PLB 759 (2016) 601
vv	$\sigma = 98.71 \pm 0.028 \pm 2.191$ nb (data) DYNNLO + CT14NNLO (theory)		•	0	4.6	arXiv:1612.03016 [hep-ex]
	$\sigma = 58.43 \pm 0.03 \pm 1.66$ nb (data) DYNNLO+CT14 NNLO (theory)		Þ		3.2	JHEP 02 (2017) 117
Z	$\sigma = 34.24 \pm 0.03 \pm 0.92 \text{ nb (data)} \\ \text{DYNNLO+CT14 NNLO (theory)}$		Δ		20.2	JHEP 02 (2017) 117
	σ = 29.53 ± 0.03 ± 0.77 nb (data) DYNNLO+CT14 NNLO (theory)		o	þ	4.6	JHEP 02 (2017) 117
_	$\sigma = 818 \pm 8 \pm 35 \text{ pb (data)} \\ \text{top++ NNLO+NLL (theory)}$, 中			3.2	PLB 761 (2016) 136
tī	$\sigma = 242.9 \pm 1.7 \pm 8.6 \text{ pb} (\text{data})$ top++ NNLO+NNLL (theory)	<u> </u>		4	20.2	EPJC 74: 3109 (2014)
	$\sigma = 182.9 \pm 3.1 \pm 6.4 \text{ pb} (\text{data})$ top++ NNLO+NNLL (theory)			ρ	4.6	EPJC 74: 3109 (2014)
	$\sigma = 247 \pm 6 \pm 46 \text{ pb (data)} \\ \text{NLO+NLL (theory)}$	Þ			3.2	arXiv:1609.03920 [hep-ex]
t _{t-chan}	$\sigma = 89.6 \pm 1.7 + 7.2 - 6.4 \text{ pb (data)}$ NLO+NLL (theory)	A		 	20.3	arXiv:1702.02859 [hep-ex]
	$\sigma = 68 \pm 2 \pm 8 \text{ pb} \text{ (data)}$ NLO+NLL (theory)	O			4.6	PRD 90, 112006 (2014)
	$\sigma = 142 \pm 5 \pm 13 \text{ pb (data)} \\ \text{NNLO (theory)}$	Þ	Theory		3.2	arXiv: 1702.04519 [hep-ex]
WW	$\sigma = 68.2 \pm 1.2 \pm 4.6 \text{ pb (data)}$ NNLO (theory)	4			20.3	PLB 763, 114 (2016)
	$\sigma = 51.9 \pm 2 \pm 4.4 \text{ pb (data)}$ NNLO (theory)	•	LHC pp $\sqrt{s} = 7$ TeV	p	4.6	PRD 87, 112001 (2013)
	$\sigma = 61.5 + 10.5 - 10 + 4.3 - 3.2 \ \mathrm{pb} \ \mathrm{(data)} \\ \mathrm{LHC}\text{-HXSWG YR4} \ \mathrm{(theory)}$, P	Data		13.3	ATLAS-CONF-2016-081
Н	$\sigma = 27.7 \pm 3 + 2.3 - 1.9 \text{ pb (data)} \\ \text{LHC-HXSWG YR4 (theory)}$	4	• Stat		20.3	EPJC 76, 6 (2016)
••	$\sigma = 22.1 + 6.7 - 5.3 + 3.3 - 2.7 \rm pb \; (data) \\ \rm LHC-HXSWG\; YR4\; (theory)$	P	stat ⊕ syst		4.5	EPJC 76, 6 (2016)
	$\sigma = 94 \pm 10 + 28 - 23 \text{ pb (data)} \\ \text{NLO+NNLL (theory)}$, P	LHC pp $\sqrt{s} = 8$ TeV		3.2	arXiv:1612.07231 [hep-ex]
Wt	$\sigma = 23 \pm 1.3 + 3.4 - 3.7 \text{ pb (data)} \\ \text{NLO+NLL (theory)}$	4	Data		20.3	JHEP 01, 064 (2016)
	$\sigma = 16.8 \pm 2.9 \pm 3.9 \mathrm{pb} \mathrm{(data)} \\ \mathrm{NLO+NLL} \mathrm{(theory)}$	Þ	stat		2.0	PLB 716, 142-159 (2012)
	$\sigma = 50.6 \pm 2.6 \pm 2.5 \text{ pb} \text{ (data)}$ MATRIX (NNLO) (theory)		stat ⊕ syst		3.2	PLB 762 (2016) 1
WZ	$\sigma = 24.3 \pm 0.6 \pm 0.9 \mathrm{pb} \mathrm{(data)}$ MATRIX (NNLO) (theory)	4	LHC pp $\sqrt{s} = 13$ TeV		20.3	PRD 93, 092004 (2016)
	$\sigma = 19 + 1.4 - 1.3 \pm 1 \text{ pb (data)}$ MATRIX (NNLO) (theory)	0			4.6	EPJC 72, 2173 (2012)
	$\sigma = 16.7 + 2.2 - 2 + 1.3 - 1 \text{ pb (data)} \\ \text{NNLO (theory)}$, p	Data stat		3.2	PRL 116, 101801 (2016)
ZZ	$\sigma = 7.3 \pm 0.4 + 0.4 - 0.3 \text{ pb} \text{ (data)}$ NNLO (theory)	Δ	stat ⊕ syst		20.3	JHEP 01, 099 (2017)
+	$\sigma = 6.7 \pm 0.7 \pm 0.5 - 0.4$ pb (data) NNLO (theory)		Dualizzina	P	4.6	JHEP 03, 128 (2013)
t _{s-chan}	$\sigma = 4.8 \pm 0.8 \pm 1.6 - 1.3 \text{ pb (data)}$ NLO+NNL (theory)	ATLAS	Preliminary		20.3	PLB 756, 228-246 (2016)
tīW	$\sigma = 1.5 \pm 0.72 \pm 0.33$ pb (data) Madgraph5 + aMCNLO (theory)				3.2	EPJC 77 (2017) 40
	$\sigma = 369 + 86 - 79 \pm 44 \text{ fb (data)}$		$\sqrt{s} = 7, 8, 13 \text{ TeV}$		20.3	JHEP 11, 172 (2015)
tτZ	$\sigma = 0.92 \pm 0.29 \pm 0.1 \text{ pb} \text{ (data)}$ Madgraph5 + aMCNLO (theory)	p (]		3.2	EPJC 77 (2017) 40
	$\sigma = 176 + 52 - 48 \pm 24 \text{ fb} (\text{data})$ HELAC-NLO (theory)				20.3	JHEP 11, 172 (2015)
	$10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1}$	1 $10^1 \ 10^2 \ 10^3$	$10^4 \ 10^5 \ 10^6 \ 10^{11}$	0.5 1 1.5 2 2.5		
			- [nh]	data/theory		

LHCb anomalies (1)



LHCb anomalies (2)

Upgrade d'ALICE run 3&4

- New electronics (TPC, TOF, TRD, Muon spectro...) + New DAQ & HLT (50 kHz Pb-Pb, O2 project)
 - New detectors: Internal Tracking System and MFT (Muon Forward tracking)

Quark Gluon Plasma & ALICE experiment

LPSC team:

- **5 permanents :** G. Conesa-Balbastre (CR), J. Faivre (MdC), C. Furget (PR), R. Guernane (CR), C. Silvestre (CR)
- **4 PhD:** A. Vauthier (UGA), H. Yokoyama (Tsukuba/UGA), R. Hosokawa (Tsukuba/UGA), H. Hassan (Liban/UGA)

Physics goals:

- Study of high density deconfined matter like QGP produced in Pb-Pb collision at LHC provides new constraints on strong interaction at the partonic level (95% of the nucleon mass).
- Study p-p collisions as a baseline for the QGP study and for comparisons with QCD calculations; study cold nuclear effect study in p-Pb collisions
- Favoured topics: study of parton energy loss in QGP through jets production and photon-hadron correlations

Technical involvement:

• Electromagnetic calorimeter: assembly, energy calibration, Level 1 trigger, reconstruction+analysis

Projects for run 3&4:

- ALICE upgrade during LS2: improve the tracking performance and increase the statistics by 10
- New jet observables, study of in-medium energy loss for heavy flavours and precise measurements of the parton energy loss through jet-jet and photon-hadron/jet correlations