Simulating the Universe

Stuart McAlpine **Simulating the Universe** McAlpine Stuart McAlpine Simulating the Universe

Outline

- What do we do?
- How do we make a Universe inside a computer?
- The current state-of-the-art.
- How can we do better in the future?

How to make a Universe

Ingredients

- Only \sim 20% of the matter in the Universe is 'normal': protons, neutrons, etc..
- The remaining $~80\%$ is comprised of dark matter.x

Initial conditions

- Light from the CMB tells us the conditions of the Universe when it was "only" 379,000 years old (About a day in the lifetime of a human).
- This tells us the initial conditions for our simulations.

Smoothed particle hydrodynamics (SPH)

- Aim to represent the contents of the Universe via a finite number of discrete "particles".
- These particles typically have a mass of around 1-10 million times the mass of our sun.

http://web.cse.ohio-state.edu/~wang.3602/courses/cse3541-2014-spring/proj_final/Ting-Chun_Sun/images/sph_particles2.png

The EAGLE simulation

How do we know we're right?

- We need to compare with empirical measurements of the Universe today.
- For example, do we have enough galaxies of the right mass, size, etc…

Stuart McAlpine **Simulating the Universe** McAlpine XLDB2017

How do we know we're right?

Exploring the parameter space

Var 15

Var 16

Var 17

Var 20

 -0.8 0.0 0.8

Var 19

 -0.8 0.0 0.8

Var 18

 -0.8 0.0 0.8

- -0.8 0.0 0.8 -0.8 0.0 0.8 -0.8 0.0 0.8 0.8 • Acceptable luminosity Var 15 **Var 15** 0.0 function fits can be -0.8 found over a wide range Green points of parameter space. generated statistically Var 16 acceptable match to • …but this is a projection galaxy mass function.effect, the acceptable $Var 17$ **Var 17** space lies on thin planes (0.05% of volume). ef-L100N1504 NdT9-L050N0752 ecal-L025N0752
	- Each plot shows a pair of model parameters (uninteresting ones are suppressed).

Stuart McAlpine **Simulating the Universe** McAlpine XLDB2017

The computational cost

- The largest scientific run is 300,000,000 cubic light years in volume.
- \sim 3.4 billion resolution elements of gas and the same again for dark matter.
- Took 43 continuous days to run on 4096 cores, using 32 Tb of memory.

The cosmology machine

~0.5 Pb of disk space

Stuart McAlpine **Simulating the Universe** McAlpine XLDB2017

A lot of post-processing

- After the simulation is run, we have to "find" the galaxies.
- This is computationally very expensive, and may not even be possible in the current state with the next generation of simulations.
- Many billion particles reduce to a few tens of thousands of galaxies.

EAGLE galaxy database

What's next?

EAGLE -XL

- Higher sampling of galaxies: 100,000 galaxies to understand what makes galaxies unique
- Enough volume to construct light -cones without excessive replication
- Enough volume to sample correlations and redshift space distortion on quasi linear scales

Challenges for EAGLE-XL

Simulating such a large volume (100 billion particles!)

- tiling
- in-flight analysis
- deleting the data!

To simulate a contiguous volume, we need to choose the boundaries between regions carefully

The next generation - SWIFT

SWIFT tasks

1M particle SPH simulation using SWIFT on 8 × 12-core nodes (Intel X5650 CPUs). Red indicates communication tasks.

Parallel Streaming I/O

- Simulation I/O is now a major bottle neck
	- speed gains from SWIFT means most of the time will be spent writing files
- Old method:
	- stop the simulation!!
	- output a "snapshot" of all particles
	- this is hopelessly inefficient!
- New method:
	- adaptively output particle updates only when needed
	- stream particle updates to local memory mapped file
	- integrate output into the taskgraph
	- reconstruct "snapshots" for interesting regions in postprocessing

use case: visualisation

this large-format movie for 'Entropy!' theatre production required 100k CPU hr to generate footage from particle snapshots

observers see more distant galaxies at earlier times - we can do the same.