
EBI is an Outstation of the European Molecular Biology Laboratory. 

eHive: a System for Massive 
High-throughput Computation

Brandon Walts
Leo Gordon
Matthieu Muffato
Andrew Yates
Paul Flicek



Motivation

• Problem space
• Large data sets, growing faster than Moore's law
• Many analyses are easy to run in parallel
• Analysis tools tend to follow the UNIX philosophy - do 

one thing but do it well
• Lots of data handling between analyses
• Provenance and reproducibility are important
• Regular repeats of analysis as part of a production cycle

• Infrastructure
• Large compute farm, managed by a scheduler (LSF)
• Data in a mix of RDBMS and flat files



Thus, eHive

• First release in 2004
• Currently controls 450 cpu-years per year of compute 

for Ensembl
• Adopted by several institutions outside of EMBL-EBI 



What's with the name?

eHive's approach to computation is based on a swarm of 
autonomous agents - naturally leading to a beehive 
metaphor:



What's with the name?

• Independent agents ("workers") perform computation.



What's with the name?

• Agents have access to resources of different types 
("meadows").



What's with the name?

• There is an overseeing process ("beekeeper"), but it is 
lightweight -- concerned with managing worker population 
and identifying problems.



What's with the name?

• There is a central database ("blackboard") that workers 
update to coordinate their activity

analysis job state

download 1 done

align 2 ready



eHive lifecycle

• The beekeeper checks the current job list and worker 
population, creating new workers if necessary

analysis job state

download 1 done

align 2 ready

+



eHive lifecycle

• Worker checks for a job it is able to execute, claims it, 
specializes if necessary, and begins execution

analysis job state

download 1 done

align 2 ready



eHive lifecycle

• Worker completes running job. Updates the job list, then 
checks to see if there is more work to do.

analysis job state

download 1 done

align 2 done



eHive lifecycle

• For short jobs, workers can claim a batch to do in one 
cycle, reducing dispatch and startup overhead

analysis job state

download 1 done

align 2 done



eHive lifecycle

• If errors occur, the beekeeper notes this and can partially or 
completely stop workflow execution

analysis job state

download 1 done

align 2 FAIL

STOP



Workflow structure

An eHive workflow is composed of

analyses

which are connected by

dataflows

and which can be controlled by

semaphores



Dataflows and events

• When each job runs, it 
can generate zero or 
more dataflow events. 

• Different events can be 
transmitted on different 
"branches."

• The consequences of 
these events are 
determined by how they 
are wired in the 
workflow

Create ("seed") new jobs

Store data in a table
Store data in an 
"accu" data structure



What's in the box?

• eHive code as a collection of Perl modules
• Scripts to instantiate and execute workflows
• Visualization and debugging utilities

• Workflow structure
• Resource usage

• Interfaces for different schedulers
• LSF is officially supported
• SGE, PBS Pro, and HTCondor reference 

implementations available
• guiHive - web based workflow management tool



Workflow analytics



Use cases...



Obtaining eHive and guiHive

https://github.com/Ensembl/ensembl-hive
https://github.com/Ensembl/guiHive

https://hub.docker.com/r/ensemblorg/guihive/

https://ensembl-hive.readthedocs.io/



Ensembl Acknowledgements
The Entire Ensembl Team

 

Funding

Co-funded by the 
European Union


