eHive: a System for Massive High-throughput Computation

Brandon Walts Leo Gordon Matthieu Muffato Andrew Yates Paul Flicek

Motivation

- Problem space
 - Large data sets, growing faster than Moore's law
 - Many analyses are easy to run in parallel
 - Analysis tools tend to follow the UNIX philosophy do one thing but do it well
 - Lots of data handling between analyses
 - Provenance and reproducibility are important
 - Regular repeats of analysis as part of a production cycle
- Infrastructure
 - Large compute farm, managed by a scheduler (LSF)
 - Data in a mix of RDBMS and flat files

Thus, eHive

- First release in 2004
- Currently controls 450 cpu-years per year of compute for Ensembl
- Adopted by several institutions outside of EMBL-EBI

eHive's approach to computation is based on a swarm of autonomous agents - naturally leading to a beehive metaphor:

• Independent agents ("workers") perform computation.

 Agents have access to resources of different types ("meadows").

 There is an overseeing process ("beekeeper"), but it is lightweight -- concerned with managing worker population and identifying problems.

• There is a central database ("blackboard") that workers update to coordinate their activity

• The beekeeper checks the current job list and worker population, creating new workers if necessary

• Worker checks for a job it is able to execute, claims it, specializes if necessary, and begins execution

• Worker completes running job. Updates the job list, then checks to see if there is more work to do.

• For short jobs, workers can claim a batch to do in one cycle, reducing dispatch and startup overhead

• If errors occur, the beekeeper notes this and can partially or completely stop workflow execution

Workflow structure

Dataflows and events

- When each job runs, it can generate zero or more dataflow events.
- Different events can be transmitted on different "branches."
- The consequences of these events are determined by how they are wired in the workflow

Alpha

Results_1

Store data in a table

Store data in an "accu" data structure

What's in the box?

- eHive code as a collection of Perl modules
- Scripts to instantiate and execute workflows
- Visualization and debugging utilities
 - Workflow structure
 - Resource usage
- Interfaces for different schedulers
 - LSF is officially supported
 - SGE, PBS Pro, and HTCondor reference implementations available
- guiHive web based workflow management tool

Workflow analytics

Obtaining eHive and guiHive

https://ensembl-hive.readthedocs.io/

https://hub.docker.com/r/ensemblorg/guihive/

Ensembl Acknowledgements

The Entire Ensembl Team

Bronwen L. Aken¹, Premanand Achuthan¹, Wasiu Akanni¹, M. Ridwan Amode¹, Friederike Bernsdorff¹, Jyothish Bhai¹, Konstantinos Billis¹, Denise Carvalho-Silva¹, Carla Cummins¹, Peter Clapham², Laurent Gil¹, Carlos García Girón¹, Leo Gordon¹, Thibaut Hourlier¹, Sarah E. Hunt¹, Sophie H. Janacek¹, Thomas Juettemann¹, Stephen Keenan¹, Matthew R. Laird¹, Ilias Lavidas¹, Thomas Maurel¹, William McLaren¹, Benjamin Moore¹, Daniel N. Murphy¹, Rishi Nag¹, Victoria Newman¹, Michael Nuhn¹, Chuang Kee Ong¹, Anne Parker¹, Mateus Patricio¹, Harpreet Singh Riat¹, Daniel Sheppard¹, Helen Sparrow¹, Kieron Taylor¹, Anja Thormann¹, Alessandro Vullo¹, Brandon Walts¹, Steven P. Wilder¹, Amonida Zadissa¹, Myrto Kostadima¹, Fergal J. Martin¹, Matthieu Muffato¹, Emily Perry¹, Magali Ruffier¹, Daniel M. Staines¹, Stephen J. Trevanion¹, Fiona Cunningham¹, Andrew Yates¹, Daniel R. Zerbino¹ and Paul Flicek^{1,2,*}

¹European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK and ²Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK

