
Structured Streaming
in Apache Spark:
Easy, Fault Tolerant and
Scalable Stream Processing

10th Extremely Large Databases Conference (XLDB)
October 11th 2017, Clermont-Ferrand, France

Juliusz Sompolski

TEAM

About Databricks

Started Spark project (now Apache Spark) at UC Berkeley
in 2009

PRODUCT
Unified Analytics Platform

MISSION
Making Big Data Simple

About Me
Software Engineer working in the new Databricks
engineering office in Amsterdam

Opened in January 2017

So far expanded to 11 people
and growing!

building robust
stream processing

apps is hard

Complexities in stream processing

Complex
Data

Diverse data formats
(json, avro, binary, …)

Data can be dirty,
late, out-of-order

Complex
Systems

Diverse storage
systems and formats
(SQL, NoSQL, parquet, ...)

System failures

Complex
Workloads

Event time processing

Combining streaming
with interactive

queries, machine
learning

you
should not have to

reason about streaming

you
should write simple queries

&

Spark
should continuously update the

answer

Structured Streaming

stream processing on Spark SQL engine
fast, scalable, fault-tolerant

rich, unified, high level APIs
deal with complex data and complex workloads

rich ecosystem of data sources
integrate with many storage systems

Treat Streams as Unbounded Tables

data stream unbounded input table

new data in the
data stream

 =
new rows appended
to a unbounded table

Conceptual Model
t = 1 t = 2 t = 3

Time

Input
data up
to t = 3

data up
to t = 1

data up
to t = 2

Treat input stream as
an input table

Every trigger interval,
input table is
effectively growing

Trigger: every 1 sec

Q
u

e
ry

Conceptual Model
t = 1 t = 2 t = 3

Time

Input
data up
to t = 3

data up
to t = 1

data up
to t = 2

Result result
up to
t = 3

result
up to
t = 1

result
up to
t = 2

If you apply a query on
the input table, the
result table changes
with the input

Every trigger interval,
we can output the
changes in the result

Trigger: every 1 sec

Output

Conceptual Model
t = 1 t = 2 t = 3

Result

Time

Input
data up
to t = 3

result
up to
t = 3

data up
to t = 1

data up
to t = 2

result
up to
t = 1

result
up to
t = 2

Output

Full input does not
need to be
processed every
trigger

Spark does not
materialize the full
input table

Q
u

e
ry

Conceptual Model
t = 1 t = 2 t = 3

Result

Time

Input
data up
to t = 3

result
up to
t = 3

data up
to t = 1

data up
to t = 2

result
up to
t = 1

result
up to
t = 2

Output

Spark converts
query to an
incremental query
that operates only
on new data to
generate output

Q
u

e
ry

Anatomy of a Streaming Query

spark.readStream
 .format("kafka")
 .option("subscribe", "input")
 .load()
 .groupBy($"value".cast("string"))
 .count()
 .writeStream
 .format("kafka")
 .option("topic", "output")
 .trigger("1 minute")
 .outputMode(OutputMode.Complete())
 .option("checkpointLocation", "…")
 .start()

Source

• Specify one or more
locations to read data
from

• Built in support for
Files/Kafka/Socket,
pluggable.

● Additional connectors, e.g. Amazon
Kinesis available on Databricks platform

• Can union() multiple
sources.

Anatomy of a Streaming Query

spark.readStream
 .format("kafka")
 .option("subscribe", "input")
 .load()
 .groupBy('value.cast("string") as 'key)
 .agg(count("*") as 'value)
 .writeStream
 .format("kafka")
 .option("topic", "output")
 .trigger("1 minute")
 .outputMode(OutputMode.Complete())
 .option("checkpointLocation", "…")
 .start()

Transformation

• Using DataFrames,
Datasets and/or SQL.

• Catalyst figures out
how to execute the
transformation
incrementally.

• Internal processing
always exactly-once.

DataFrames,
Datasets, SQL

input = spark.readStream
 .format("json")
 .load("subscribe")

result = input
 .select("device", "signal")
 .where("signal > 15")

result.writeStream
 .format("parquet")
 .start("dest-path")

Logical
Plan

Read from
JSON

Project
device, signal

Filter
signal > 15

Write to
Parquet

Spark automatically streamifies!

Spark SQL converts batch-like query to a series of incremental
execution plans operating on new batches of data

JSON
Source

Optimized
Operator

Codegen,
off-heap, etc.

Parquet
Sink

Optimized
Physical Plan

Series of Incremental
Execution Plans

p
ro

ce
ss

n
e
w

 fi
le

s

t = 1 t = 2 t = 3

p
ro

ce
ss

n
e
w

 fi
le

s

p
ro

ce
ss

n

e
w

 fi
le

s

Anatomy of a Streaming Query

spark.readStream
 .format("kafka")
 .option("subscribe", "input")
 .load()
 .groupBy('value.cast("string") as 'key)
 .agg(count("*") as 'value)
 .writeStream
 .format("kafka")
 .option("topic", "output")
 .trigger("1 minute")
 .outputMode(OutputMode.Complete())
 .option("checkpointLocation", "…")
 .start()

Sink

• Accepts the output of
each batch.

• When sinks are
transactional, exactly
once semantics.

• Use foreach to
execute arbitrary
code.

Anatomy of a Streaming Query

spark.readStream
 .format("kafka")
 .option("subscribe", "input")
 .load()
 .groupBy('value.cast("string") as 'key)
 .agg(count("*") as 'value)
 .writeStream
 .format("kafka")
 .option("topic", "output")
 .trigger("1 minute")
 .outputMode("update")
 .option("checkpointLocation", "…")
 .start()

Output mode – What's
output
• Complete – Output the whole

answer every time

• Update – Output changed rows

• Append – Output new rows only

Trigger – When to output
• Specified as a time, eventually

supports data size

• No trigger means as fast as
possible

Anatomy of a Streaming Query

spark.readStream
 .format("kafka")
 .option("subscribe", "input")
 .load()
 .groupBy('value.cast("string") as 'key)
 .agg(count("*") as 'value)
 .writeStream
 .format("kafka")
 .option("topic", "output")
 .trigger("1 minute")
 .outputMode("update")
 .option("checkpointLocation", "…")
 .start()

Checkpoint

• Tracks the progress of a
query in persistent
storage

• Can be used to restart
the query if there is a
failure.

Fault-tolerance with Checkpointing

Checkpointing - metadata
(e.g. offsets) of current batch
stored in a write ahead log

Huge improvement over Spark
Streaming checkpoints

Offsets saved as JSON, no binary
saved

Can restart after app code change

end-to-end
exactly-once
guarantees

p
ro

ce
ss

n
e
w

fi
le

s

t = 1 t = 2 t = 3

p
ro

ce
ss

n

e
w

fi
le

s
p

ro
ce

ss

n
e
w

fi
le

s

write
ahead

log

Dataset/DataFrame

SQL

spark.sql("
 SELECT type, sum(signal)
 FROM devices
 GROUP BY type
")

Most familiar to BI
Analysts

Supports SQL-2003,
HiveQL

val df: DataFrame =
 spark.table("devices")
 .groupBy("type")
 .sum("signal"))

Great for Data Scientists
familiar with Pandas, R
Dataframes

DataFrames Dataset

val ds: Dataset[(String, Double)] =
 spark.table("devices")
 .as[DeviceData]
 .groupByKey(_.type)
 .mapValues(_.signal)
 .reduceGroups(_ + _)

Great for Data Engineers who
want compile-time type
safety

You choose your hammer for whatever nail you
have!

Complex Streaming ETL

Traditional ETL

Raw, dirty, un/semi-structured data is
dumped as files

Periodic jobs run every few hours to convert
raw data to structured data ready for further
analytics

23

file
dump

seconds hours

table

10101010

Traditional ETL

Hours of delay before taking decisions
on latest data

Unacceptable when time is of essence
[intrusion detection, anomaly detection, etc.]

file
dump

seconds hours

table

10101010

Streaming ETL w/ Structured Streaming

Structured Streaming enables raw
data to be available as structured data
as soon as possible

25

seconds

table

10101010

Streaming ETL w/ Structured Streaming

Example

Json data being received in
Kafka

Parse nested json and flatten
it

Store in structured Parquet
table

Get end-to-end failure
guarantees

val rawData = spark.readStream
 .format("kafka")
 .option("kafka.boostrap.servers",...)
 .option("subscribe", "topic")
 .load()

val parsedData = rawData
 .selectExpr("cast (value as string) as json"))
 .select(from_json("json", schema).as("data"))
 .select("data.*")

val query = parsedData.writeStream
 .option("checkpointLocation", "/checkpoint")
 .partitionBy("date")
 .format("parquet")
 .start("/parquetTable")

Reading from Kafka

Specify options to configure

How?
 kafka.boostrap.servers => broker1,broker2

What?
subscribe => topic1,topic2,topic3 // fixed list of topics
subscribePattern => topic* // dynamic list of topics
assign => {"topicA":[0,1] } // specific partitions

Where?
 startingOffsets => latest(default) / earliest / {"topicA":{"0":23,"1":345} }

val rawData = spark.readStream
.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()

Reading from Kafka

val rawData = spark.readStream
.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()

rawData dataframe
has the following
columns
key value topic partition offset timestamp

[binary] [binary] "topicA" 0 345 1486087873

[binary] [binary] "topicB" 3 2890 1486086721

Transforming Data

Cast binary value to
string
Name it column json

val parsedData = rawData
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.select("data.*")

Transforming Data

Cast binary value to
string
Name it column json

Parse json string and
expand into nested
columns, name it data

val parsedData = rawData
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.select("data.*")

json

{ "timestamp":
1486087873, "device":
"devA", …}

{ "timestamp":
1486082418, "device":
"devX", …}

data (nested)

time
stamp

device …

14860
87873

devA …

14860
86721

devX …

from_json("json")
as "data"

Transforming Data

Cast binary value to
string
Name it column json

Parse json string and
expand into nested
columns, name it data

Flatten the nested columns

val parsedData = rawData
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.select("data.*")

data (nested)

time
stamp

device …

14860
87873

devA …

14860
86721

devX …

time
stamp

device …

1486087
873

devA …

1486086
721

devX …

select("data.*")

(not nested)

Transforming Data

Cast binary value to
string
Name it column json

Parse json string and
expand into nested
columns, name it data

Flatten the nested columns

val parsedData = rawData
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.select("data.*")

powerful built-in APIs
to perform complex

data transformations
from_json, to_json, explode, ...

100s of functions

(see our blog post)

https://databricks.com/blog/2017/02/23/working-complex-data-formats-structured-streaming-apache-spark-2-1.html

Writing to

Save parsed data as
Parquet table in the given
path

Partition files by date so
that future queries on
time slices of data is fast

e.g. query on last 48 hours of
data

val query = parsedData.writeStream
.format("parquet")
.partitionBy("date")
.option("checkpointLocation", ...)
.start("/parquetTable")

Fault tolerance

Enable checkpointing
by setting the
checkpoint location for
fault tolerance

start() actually starts a
continuous running
StreamingQuery in the
Spark cluster

val query = parsedData.writeStream
.format("parquet")
.partitionBy("date")
.option("checkpointLocation", ...)
.start("/parquetTable")

Streaming Query

query is a handle to the continuously
running StreamingQuery

Used to monitor and manage the
execution

val query = parsedData.writeStream
.format("parquet")
.partitionBy("date")
.option("checkpointLocation", ...)
.start("/parquetTable")/")

p
ro

ce
ss

n
e
w

d

a
ta

t = 1 t = 2 t = 3

p
ro

ce
ss

n
e
w

d

a
ta

p
ro

ce
ss

n
e
w

d

a
ta

StreamingQuery

Data Consistency on Ad-hoc Queries

Data available for complex, ad-hoc analytics within seconds

Parquet table is updated atomically, ensures prefix integrity
Even if distributed, ad-hoc queries will see either all updates from
streaming query or none, read more in our blog

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

complex,ad-hoc
queries on

latest
data

seconds!

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

Working With Time

Event Time

Many use cases require aggregate statistics by event
time

E.g. what's the #errors in each system in the 1 hour windows?

Many challenges
Extracting event time from data, handling late, out-of-order
data

DStream APIs were insufficient for event-time
processing

Event time Aggregations

Windowing is just another type of grouping in
Structured Streaming

number of records every hour

Support UDAFs!

parsedData
.groupBy(window("timestamp","1 hour"))
.count()

parsedData
.groupBy(
"device",
window("timestamp","10 mins", “5 mins”))
.avg("signal")

avg signal strength of each
device in 10 min windows,
sliding every 5 minutes

Stateful Processing for Aggregations

Aggregates has to be saved as
distributed state between triggers

Each trigger reads previous state and
writes updated state

State stored in memory,
backed by write ahead log in HDFS/S3

Fault-tolerant, exactly-once guarantee!

p
ro

ce
ss

n
e
w

 d
a
ta

t = 1

sink

src

t = 2

p
ro

ce
ss

n

e
w

 d
a
ta

sink

src

t = 3

p
ro

ce
ss

n

e
w

 d
a
ta

sink

src

state state

write
ahead

log

state updates
are written to
log for checkpointing

state

Automatically handles Late Data

12:00 -
13:00

1 12:00 -
13:00

3

13:00 -
14:00

1

12:00 -
13:00

3

13:00 -
14:00

2

14:00 -
15:00

5

12:00 -
13:00

5

13:00 -
14:00

2

14:00 -
15:00

5

15:00 -
16:00

4

12:00 -
13:00

3

13:00 -
14:00

2

14:00 -
15:00

6

15:00 -
16:00

4

16:00 -
17:00

3

13:00 14:00 15:00 16:00 17:00 Keeping state
allows late data to
update counts of
old windows

red = state updated
 with late data

But size of the state increases
indefinitely if old windows are not
dropped

Watermarking to limit State

Watermark - moving
threshold of how late data is
expected to be and when to
drop old state

parsedData
 .withWatermark("timestamp", "10 minutes")

.groupBy(window("timestamp","5 minutes"))

.count()

Watermarking to limit State

Watermark - moving
threshold of how late data is
expected to be and when to
drop old state

Trails behind max seen
event time

Trailing gap is configurable

event time

max event time

watermark
data older

than
watermark

not expected

12:30

12:20 PM

trailing gap
of 10 mins

Watermarking to limit State

Data newer than watermark may
be late, but allowed to aggregate

Data older than watermark is
"too late" and dropped

Windows older than watermark
automatically deleted to limit the
amount of intermediate state

max event time

event time

watermark

late data
allowed

to
aggregate

data too late,
dropped

allowed
lateness
of 10
mins

Watermarking to limit State

data too late,
ignored in
counts, state
dropped

Processing
Time

12:00

12:05

12:10

12:15

12:10 12:15 12:20

12:07

12:13

12:08

E
v
e
n

t
Ti

m
e

12:15

12:18

12:04

watermark updated to
12:14 - 10m = 12:04
for next trigger,
state < 12:04 deleted

data is late, but
considered in
counts

parsedData
 .withWatermark("timestamp", "10 minutes")
 .groupBy(window("timestamp","5 minutes"))
 .count()

system tracks
max observed

event time

12:08

wm = 12:04

1
0
 m

in

12:14

More details in blog post

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html

Clean separation of concerns

parsedData
 .withWatermark("timestamp", "10 minutes")
 .groupBy(window("timestamp","5 minutes"))
 .count()
 .writeStream
 .trigger("10 seconds")
 .start()

Query Semantics

Processing Details

separated from

Clean separation of concerns

parsedData
 .withWatermark("timestamp", "10 minutes")
 .groupBy(window("timestamp","5 minutes"))
 .count()
 .writeStream
 .trigger("10 seconds")
 .start()

Query Semantics
How to group data by
time?
(same for batch &
streaming)

Processing Details

Clean separation of concerns

parsedData
 .withWatermark("timestamp", "10 minutes")
 .groupBy(window("timestamp","5 minutes"))
 .count()
 .writeStream
 .trigger("10 seconds")
 .start()

Query Semantics
How to group data by
time?
(same for batch &
streaming)

Processing Details
How late can data be?

Clean separation of concerns

parsedData
 .withWatermark("timestamp", "10 minutes")
 .groupBy(window("timestamp","5 minutes"))
 .count()
 .writeStream
 .trigger("10 seconds")
 .start()

Query Semantics
How to group data by
time?
(same for batch &
streaming)

Processing Details
How late can data be?
How often to emit updates?

Arbitrary Stateful Operations [Spark 2.2]

(flat)mapGroupsWithState
allows any user-defined
stateful function to a
user-defined state

Direct support for per-key
timeouts in event-time or
processing-time

Supports Scala and Java

ds.groupByKey(_.id)
 .mapGroupsWithState
 (timeoutConf)
 (mappingWithStateFunc)

def mappingWithStateFunc(
 key: K,
 values: Iterator[V],
 state: GroupState[S]): U = {
 // update or remove state
 // set timeouts
 // return mapped value
}

Alerting

val alerts = stream
 .as[Event]
 .groupBy(_.id)
 .flatMapGroupsWithState(Append, GST.ProcessingTimeTimeout) {
 (id: Int, events: Iterator[Event], state: GroupState[…]) =>
 ...
 }
 .writeStream
 .queryName("alerts")
 .foreach(new PagerdutySink(credentials))

Monitor a stream using custom stateful logic
with timeouts.

Sessionization

val sessions = stream
 .as[Event]
 .groupBy(_.session_id)
 .mapGroupsWithState(GroupStateTimeout.EventTimeTimeout) {
 (id: Int, events: Iterator[Event], state: GroupState[…]) =>
 ...
 }
 .writeStream
 .parquet("/user/sessions")

Analyze sessions of user/system behavior

Sneak-peek into the future

Stream-stream joins [Spark 2.3]
● Can join two streams

together

● State of such operation
would grow indefinitely...

val clickStream = spark.readStream
...
.select(‘clickImpressionId,

‘timestamp as “clickTS”, ...)

val impressionsStream = spark.readStream
...
.select(‘impressionId,

‘timestamp as “impressionTS”, …)

impressionsStream.join(clickStream,
expr(“clickImpressionId = impressionId”))

Stream-stream joins [Spark 2.3]
● Can join two streams

together

● Watermarking limits how
late the data can come
come

● Join condition limits how
late we expect a click to
happen after an impression

val clickStream = spark.readStream
...
.select(‘clickImpressionId,

‘timestamp as “clickTS”, ...)
.withWatermark(‘clickTS, “10 minutes”)

val impressionsStream = spark.readStream
...
.select(‘impressionId,

‘timestamp as “impressionTS”, …)
.withWatermark(‘impressionTS, “10 minutes”)

impressionsStream.join(clickStream,
expr(“clickImpressionId = impressionId AND” +

“clickTS BETWEEN impressionTS AND” +
 “impressionTS + interval 10 minutes”))

Stream-stream joins [Spark 2.3]
● Can join two streams

together

● With watermarking and join
condition limiting when a
match could come, outer
joins are possible

val clickStream = spark.readStream
...
.select(‘clickImpressionId,

‘timestamp as “clickTS”, ...)
.withWatermark(‘clickTS, “10 minutes”)

val impressionsStream = spark.readStream
...
.select(‘impressionId,

‘timestamp as “impressionTS”, …)
.withWatermark(‘impressionTS, “10 minutes”)

impressionsStream.join(clickStream,
expr(“clickImpressionId = impressionId AND” +

“clickTS BETWEEN impressionTS AND” +
 “impressionTS + interval 10 minutes”),

“leftouter”)

Continuous processing [Spark 2.3]

A new execution mode that allows fully pipelined
execution
– Streaming execution without microbatches

– Supports async checkpointing and ~1ms latency

– No changes required to user code

Tracked in SPARK-20928

p
ro

ce
ss

n
e
w

 fi
le

s

t = 1 t = 2 t = 3

p
ro

ce
ss

n

e
w

 fi
le

s

p
ro

ce
ss

n

e
w

 fi
le

s

https://issues.apache.org/jira/browse/SPARK-20928

More Info
Structured Streaming Programming Guide

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

Anthology of Databricks blog posts and talks about
structured streaming:

https://databricks.com/blog/2017/08/24/anthology-of-technical-assets-on-apache-sparks-structured-
streaming.html

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

UNIFIED ANALYTICS PLATFORM

Try Apache Spark in Databricks!

• Collaborative cloud environment
• Free version (community edition)

DATABRICKS RUNTIME
• Apache Spark - optimized for the

cloud
• Caching and optimization layer -

DBIO
• Enterprise security - DBES

Try for free today
databricks.com

https://spark-summit.org/eu-2017/

Discount code:
Databricks

https://spark-summit.org/eu-2017/

Pre-Spark Summit, Dublin

	Slide 1
	About Databricks
	About Me
	Slide 4
	Complexities in stream processing
	Slide 6
	Slide 7
	Structured Streaming
	Treat Streams as Unbounded Tables
	Conceptual Model
	Conceptual Model
	Conceptual Model
	Conceptual Model
	Anatomy of a Streaming Query
	Slide 15
	Spark automatically streamifies!
	Slide 17
	Slide 18
	Slide 19
	Fault-tolerance with Checkpointing
	Dataset/DataFrame
	Slide 22
	Traditional ETL
	Traditional ETL
	Streaming ETL w/ Structured Streaming
	Streaming ETL w/ Structured Streaming
	Reading from Kafka
	Reading from Kafka
	Transforming Data
	Transforming Data
	Transforming Data
	Transforming Data
	Writing to
	Checkpointing
	Streaming Query
	Data Consistency on Ad-hoc Queries
	Slide 37
	Event Time
	Event time Aggregations
	Stateful Processing for Aggregations
	Automatically handles Late Data
	Watermarking to limit State
	Slide 43
	Watermarking to limit State
	Watermarking to limit State
	Slide 46
	Clean separation of concerns
	Slide 48
	Slide 49
	Arbitrary Stateful Operations [Spark 2.2]
	Alerting
	Sessionization
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	More Info
	Try Apache Spark in Databricks!
	Slide 60
	Slide 61

