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TEAM

About Databricks

Started Spark project (now Apache Spark) at UC Berkeley 
in 2009

PRODUCT
Unified Analytics Platform

MISSION
Making Big Data Simple



About Me
Software Engineer working in the new Databricks 
engineering office in Amsterdam

Opened in January 2017

So far expanded to 11 people
and growing!



building robust 
stream processing 

apps is hard



Complexities in stream processing

Complex
Data

Diverse data formats 
(json, avro, binary, …)

Data can be dirty, 
late, out-of-order

Complex 
Systems

Diverse storage 
systems and formats 
(SQL, NoSQL, parquet, ... )

System failures

Complex 
Workloads

Event time processing

Combining streaming 
with interactive 

queries, machine 
learning



you 
should not have to 

reason about streaming



you 
should write simple queries

&
 

Spark 
should continuously update the 

answer



Structured Streaming

stream processing on Spark SQL engine
fast, scalable, fault-tolerant

rich, unified, high level APIs 
deal with complex data and complex workloads

rich ecosystem of data sources
integrate with many storage systems 



Treat Streams as Unbounded Tables

data stream unbounded input table

new data in the 
data stream

 = 
new rows appended 
to a unbounded table



Conceptual Model
t = 1 t = 2 t = 3

Time

Input
data up
to t = 3

data up
to t = 1

data up
to t = 2

Treat input stream as 
an input table

Every trigger interval, 
input table is 
effectively  growing

Trigger: every 1 sec
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Conceptual Model
t = 1 t = 2 t = 3

Time

Input
data up
to t = 3

data up
to t = 1

data up
to t = 2

Result result 
up to
t = 3

result 
up to
t = 1

result 
up to
t = 2

If you apply a query on 
the input table, the 
result table changes 
with the input

Every trigger interval, 
we can output the 
changes in the result

Trigger: every 1 sec

Output



Conceptual Model
t = 1 t = 2 t = 3

Result

Time

Input
data up
to t = 3

result 
up to
t = 3

data up
to t = 1

data up
to t = 2

result 
up to
t = 1

result 
up to
t = 2

Output

Full input does not 
need to be 
processed every 
trigger

Spark does not 
materialize the full 
input table
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Conceptual Model
t = 1 t = 2 t = 3

Result

Time

Input
data up
to t = 3

result 
up to
t = 3

data up
to t = 1

data up
to t = 2

result 
up to
t = 1

result 
up to
t = 2

Output

Spark converts 
query to an 
incremental query
that operates only 
on new data to 
generate output

Q
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Anatomy of a Streaming Query

spark.readStream
  .format("kafka")
  .option("subscribe", "input")
  .load()
  .groupBy($"value".cast("string"))
  .count()
  .writeStream
  .format("kafka")
  .option("topic", "output")
  .trigger("1 minute")
  .outputMode(OutputMode.Complete())
  .option("checkpointLocation", "…")
  .start()

Source 

• Specify one or more 
locations to read data 
from

• Built in support for 
Files/Kafka/Socket, 
pluggable.

● Additional connectors, e.g. Amazon 
Kinesis available on Databricks platform

• Can union() multiple 
sources.



Anatomy of a Streaming Query

spark.readStream
  .format("kafka")
  .option("subscribe", "input")
  .load()
  .groupBy('value.cast("string") as 'key)
  .agg(count("*") as 'value)
  .writeStream
  .format("kafka")
  .option("topic", "output")
  .trigger("1 minute")
  .outputMode(OutputMode.Complete())
  .option("checkpointLocation", "…")
  .start()

Transformation

• Using DataFrames, 
Datasets and/or SQL.

• Catalyst figures out 
how to execute the 
transformation 
incrementally.

• Internal processing 
always exactly-once.



DataFrames,
Datasets, SQL

input = spark.readStream
  .format("json")
  .load("subscribe")

result = input
  .select("device", "signal")
  .where("signal > 15")

result.writeStream
  .format("parquet")
  .start("dest-path")

Logical 
Plan

Read from 
JSON

Project
device, signal

Filter
signal > 15

Write to 
Parquet

Spark automatically streamifies!

Spark SQL converts batch-like query to a series of incremental 
execution plans operating on new batches of data

JSON 
Source

Optimized 
Operator

Codegen,
off-heap, etc.

Parquet
Sink

Optimized
Physical Plan

Series of Incremental
Execution Plans
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Anatomy of a Streaming Query

spark.readStream
  .format("kafka")
  .option("subscribe", "input")
  .load()
  .groupBy('value.cast("string") as 'key)
  .agg(count("*") as 'value)
  .writeStream
  .format("kafka")
  .option("topic", "output")
  .trigger("1 minute")
  .outputMode(OutputMode.Complete())
  .option("checkpointLocation", "…")
  .start()

Sink

• Accepts the output of 
each batch.

• When sinks are 
transactional, exactly 
once semantics.

• Use foreach to 
execute arbitrary 
code.



Anatomy of a Streaming Query

spark.readStream
  .format("kafka")
  .option("subscribe", "input")
  .load()
  .groupBy('value.cast("string") as 'key)
  .agg(count("*") as 'value)
  .writeStream
  .format("kafka")
  .option("topic", "output")
  .trigger("1 minute")
  .outputMode("update")
  .option("checkpointLocation", "…")
  .start()

Output mode – What's 
output
• Complete – Output the whole 

answer every time

• Update – Output changed rows

• Append – Output new rows only

Trigger – When to output
• Specified as a time, eventually 

supports data size

• No trigger means as fast as 
possible



Anatomy of a Streaming Query

spark.readStream
  .format("kafka")
  .option("subscribe", "input")
  .load()
  .groupBy('value.cast("string") as 'key)
  .agg(count("*") as 'value)
  .writeStream
  .format("kafka")
  .option("topic", "output")
  .trigger("1 minute")
  .outputMode("update")
  .option("checkpointLocation", "…")
  .start()

Checkpoint

• Tracks the progress of a 
query in persistent 
storage

• Can be used to restart 
the query if there is a 
failure.



Fault-tolerance with Checkpointing

Checkpointing - metadata 
(e.g. offsets) of current batch 
stored in a write ahead log

Huge improvement over Spark 
Streaming checkpoints

Offsets saved as JSON, no binary 
saved

Can restart after app code change

end-to-end 
exactly-once 
guarantees
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Dataset/DataFrame

SQL

spark.sql("
  SELECT type, sum(signal)
  FROM devices
  GROUP BY type
")

Most familiar to BI 
Analysts

Supports SQL-2003, 
HiveQL

val df: DataFrame = 
  spark.table("devices")
    .groupBy("type")
    .sum("signal"))

Great for Data Scientists 
familiar with Pandas, R 
Dataframes

DataFrames Dataset

val ds: Dataset[(String, Double)] =
  spark.table("devices")
    .as[DeviceData]
    .groupByKey(_.type)
    .mapValues(_.signal)
    .reduceGroups(_ + _)

Great for Data Engineers who 
want compile-time type 
safety

You choose your hammer for whatever nail you 
have!



Complex Streaming ETL



Traditional ETL

Raw, dirty, un/semi-structured data is 
dumped as files 

Periodic jobs run every few hours to convert 
raw data to structured data ready for further 
analytics

23

file
dump

seconds hours

table

10101010



Traditional ETL

Hours of delay before taking decisions
on latest data

Unacceptable when time is of essence
[intrusion detection, anomaly detection, etc.]

file
dump

seconds hours

table

10101010



Streaming ETL w/ Structured Streaming 

Structured Streaming enables raw 
data to be available as structured data 
as soon as possible

25

seconds      

table

10101010



Streaming ETL w/ Structured Streaming 

Example

Json data being received in 
Kafka

Parse nested json and flatten 
it

Store in structured Parquet 
table

Get end-to-end failure 
guarantees

val rawData = spark.readStream
  .format("kafka")
  .option("kafka.boostrap.servers",...)
  .option("subscribe", "topic")
  .load()

val parsedData = rawData
  .selectExpr("cast (value as string) as json"))
  .select(from_json("json", schema).as("data"))
  .select("data.*")

val query = parsedData.writeStream 
  .option("checkpointLocation", "/checkpoint") 
  .partitionBy("date")
  .format("parquet") 
  .start("/parquetTable")



Reading from Kafka

Specify options to configure

How?
   kafka.boostrap.servers => broker1,broker2

What?
subscribe        =>  topic1,topic2,topic3   // fixed list of topics
subscribePattern =>  topic*    // dynamic list of topics
assign     =>  {"topicA":[0,1] }     // specific partitions

Where?
   startingOffsets => latest(default) / earliest / {"topicA":{"0":23,"1":345} }

val rawData = spark.readStream
.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()



Reading from Kafka

val rawData = spark.readStream
.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()

rawData dataframe 
has the following 
columns
key value topic partition offset timestamp

[binary] [binary] "topicA" 0 345 1486087873

[binary] [binary] "topicB" 3 2890 1486086721



Transforming Data

Cast binary value to 
string
Name it column json

val parsedData = rawData
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.select("data.*")



Transforming Data

Cast binary value to
string
Name it column json

Parse json string and 
expand into nested 
columns, name it data

val parsedData = rawData
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.select("data.*")

json

{ "timestamp": 
1486087873, "device": 
"devA", …}

{ "timestamp": 
1486082418, "device": 
"devX", …}

data (nested)

time
stamp

device …

14860
87873

devA …

14860
86721

devX …

from_json("json")
as "data"



Transforming Data

Cast binary value to
string
Name it column json

Parse json string and 
expand into nested 
columns, name it data

Flatten the nested columns

val parsedData = rawData
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.select("data.*")

data (nested)

time
stamp

device …

14860
87873

devA …

14860
86721

devX …

time
stamp

device …

1486087
873

devA …

1486086
721

devX …

select("data.*")

(not nested)



Transforming Data

Cast binary value to
string
Name it column json

Parse json string and 
expand into nested 
columns, name it data

Flatten the nested columns

val parsedData = rawData
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.select("data.*")

powerful built-in APIs 
to perform complex 

data transformations
from_json, to_json, explode, ... 

100s of functions

(see our blog post)

https://databricks.com/blog/2017/02/23/working-complex-data-formats-structured-streaming-apache-spark-2-1.html


Writing to

Save parsed data as 
Parquet table in the given 
path

Partition files by date so 
that future queries on 
time slices of data is fast

e.g. query on last 48 hours of 
data

val query = parsedData.writeStream
.format("parquet")
.partitionBy("date")
.option("checkpointLocation", ...)
.start("/parquetTable")



Fault tolerance

Enable checkpointing 
by setting the 
checkpoint location for 
fault tolerance

start() actually starts a 
continuous running 
StreamingQuery in the 
Spark cluster

val query = parsedData.writeStream
.format("parquet")
.partitionBy("date")
.option("checkpointLocation", ...)
.start("/parquetTable")



Streaming Query

query is a handle to the continuously 
running StreamingQuery

Used to monitor and manage the 
execution

val query = parsedData.writeStream
.format("parquet")
.partitionBy("date")
.option("checkpointLocation", ...)
.start("/parquetTable")/")
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Data Consistency on Ad-hoc Queries

Data available for complex, ad-hoc analytics within seconds

Parquet table is updated atomically, ensures prefix integrity
Even if distributed, ad-hoc queries will see either all updates from 
streaming query or none, read more in our blog

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

complex,ad-hoc 
queries on 

latest 
data

seconds!

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html


Working With Time



Event Time

Many use cases require aggregate statistics by event 
time

E.g. what's the #errors in each system in the 1 hour windows?

Many challenges
Extracting event time from data, handling late, out-of-order 
data

DStream APIs were insufficient for event-time 
processing



Event time Aggregations

Windowing is just another type of grouping in
Structured Streaming

number of records every hour

Support UDAFs!

parsedData
.groupBy(window("timestamp","1 hour"))
.count()

parsedData
.groupBy(
"device", 
window("timestamp","10 mins", “5 mins”))
.avg("signal")

avg signal strength of each 
device in 10 min windows, 
sliding every 5 minutes



Stateful Processing for Aggregations

Aggregates has to be saved as 
distributed state between triggers

Each trigger reads previous state and 
writes updated state

State stored in memory, 
backed by write ahead log in HDFS/S3

Fault-tolerant, exactly-once guarantee!
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state updates 
are written to 
log for checkpointing
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Automatically handles Late Data

12:00 - 
13:00

1 12:00 - 
13:00

3

13:00 - 
14:00

1

12:00 - 
13:00

3

13:00 - 
14:00

2

14:00 - 
15:00

5

12:00 - 
13:00

5

13:00 - 
14:00

2

14:00 - 
15:00

5

15:00 - 
16:00

4

12:00 - 
13:00

3

13:00 - 
14:00

2

14:00 - 
15:00

6

15:00 - 
16:00

4

16:00 - 
17:00

3

13:00 14:00 15:00 16:00 17:00 Keeping state 
allows late data to 
update counts of 
old windows

red = state updated 
       with late data

But size of the state increases 
indefinitely if old windows are not 
dropped



Watermarking to limit State 

Watermark - moving 
threshold of how late data is 
expected to be and when to 
drop old state

parsedData
     .withWatermark("timestamp", "10 minutes")

.groupBy(window("timestamp","5 minutes"))

.count()



Watermarking to limit State 

Watermark - moving 
threshold of how late data is 
expected to be and when to 
drop old state

Trails behind max seen 
event time

Trailing gap is configurable

event time 

max event time

watermark
data older 

than 
watermark 

not expected

12:30

12:20 PM

trailing gap
of 10 mins



Watermarking to limit State 

Data newer than watermark may 
be late, but allowed to aggregate

Data older than watermark is 
"too late" and dropped

Windows older than watermark 
automatically deleted to limit the 
amount of intermediate state

max event time

event time 

watermark

late data
allowed 

to 
aggregate

data too late, 
dropped

allowed 
lateness
of 10 
mins



Watermarking to limit State 

data too late, 
ignored in 
counts, state 
dropped

Processing 
Time

12:00

12:05

12:10

12:15

12:10 12:15 12:20

12:07

12:13

12:08

E
v
e
n

t 
Ti

m
e

12:15

12:18

12:04

watermark updated to 
12:14 - 10m = 12:04 
for next trigger, 
state < 12:04 deleted

data is late, but 
considered in 
counts

parsedData
     .withWatermark("timestamp", "10 minutes")
     .groupBy(window("timestamp","5 minutes"))
     .count()

system tracks 
max observed 

event time

12:08

wm = 12:04

1
0
 m

in

12:14

More details in blog post

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html


Clean separation of concerns

parsedData
  .withWatermark("timestamp", "10 minutes") 
  .groupBy(window("timestamp","5 minutes"))
  .count() 
  .writeStream
  .trigger("10 seconds")
  .start()

Query Semantics

Processing Details

separated from



Clean separation of concerns

parsedData
  .withWatermark("timestamp", "10 minutes")
  .groupBy(window("timestamp","5 minutes"))
  .count()
  .writeStream 
  .trigger("10 seconds")
  .start()

Query Semantics
How to group data by 
time?
(same for batch & 
streaming)

Processing Details



Clean separation of concerns

parsedData
  .withWatermark("timestamp", "10 minutes")
  .groupBy(window("timestamp","5 minutes"))
  .count()
  .writeStream 
  .trigger("10 seconds")
  .start()

Query Semantics
How to group data by 
time?
(same for batch & 
streaming)

Processing Details
How late can data be?



Clean separation of concerns

parsedData
  .withWatermark("timestamp", "10 minutes")
  .groupBy(window("timestamp","5 minutes"))
  .count()
  .writeStream 
  .trigger("10 seconds")
  .start()

Query Semantics
How to group data by 
time?
(same for batch & 
streaming)

Processing Details
How late can data be?
How often to emit updates? 



Arbitrary Stateful Operations [Spark 2.2]

(flat)mapGroupsWithState
allows any user-defined
stateful function to a 
user-defined state

Direct support for per-key 
timeouts in event-time or 
processing-time

Supports Scala and Java

ds.groupByKey(_.id) 
  .mapGroupsWithState
    (timeoutConf)  
    (mappingWithStateFunc) 

def mappingWithStateFunc(
     key: K,
     values: Iterator[V],
     state: GroupState[S]): U = { 
       // update or remove state 
       // set timeouts 
       // return mapped value 
}



Alerting

val alerts = stream
  .as[Event]
  .groupBy(_.id)
  .flatMapGroupsWithState(Append, GST.ProcessingTimeTimeout) {
    (id: Int, events: Iterator[Event], state: GroupState[…]) =>
    ...
  }
  .writeStream
  .queryName("alerts")
  .foreach(new PagerdutySink(credentials))

Monitor a stream using custom stateful logic 
with timeouts.



Sessionization

val sessions = stream
  .as[Event]
  .groupBy(_.session_id)
  .mapGroupsWithState(GroupStateTimeout.EventTimeTimeout) {
    (id: Int, events: Iterator[Event], state: GroupState[…]) =>
    ...
  }
  .writeStream
  .parquet("/user/sessions")

Analyze sessions of user/system behavior



Sneak-peek into the future



Stream-stream joins [Spark 2.3]
● Can join two streams 

together

● State of such operation 
would grow indefinitely...

val clickStream = spark.readStream
...
.select(‘clickImpressionId,

‘timestamp as “clickTS”, ...)

val impressionsStream = spark.readStream
...
.select(‘impressionId,

‘timestamp as “impressionTS”, …)

impressionsStream.join(clickStream,
expr(“clickImpressionId = impressionId”))



Stream-stream joins [Spark 2.3]
● Can join two streams 

together

● Watermarking limits how 
late the data can come 
come

● Join condition limits how 
late we expect a click to 
happen after an impression

val clickStream = spark.readStream
...
.select(‘clickImpressionId,

‘timestamp as “clickTS”, ...)
.withWatermark(‘clickTS, “10 minutes”)

val impressionsStream = spark.readStream
...
.select(‘impressionId,

‘timestamp as “impressionTS”, …)
.withWatermark(‘impressionTS, “10 minutes”)

impressionsStream.join(clickStream,
expr(“clickImpressionId = impressionId AND” +

“clickTS BETWEEN impressionTS AND” +
    “impressionTS + interval 10 minutes”)) 



Stream-stream joins [Spark 2.3]
● Can join two streams 

together

● With watermarking and join 
condition limiting when a 
match could come, outer 
joins are possible

val clickStream = spark.readStream
...
.select(‘clickImpressionId,

‘timestamp as “clickTS”, ...)
.withWatermark(‘clickTS, “10 minutes”)

val impressionsStream = spark.readStream
...
.select(‘impressionId,

‘timestamp as “impressionTS”, …)
.withWatermark(‘impressionTS, “10 minutes”)

impressionsStream.join(clickStream,
expr(“clickImpressionId = impressionId AND” +

“clickTS BETWEEN impressionTS AND” +
    “impressionTS + interval 10 minutes”),

“leftouter”) 



Continuous processing [Spark 2.3]

A new execution mode that allows fully pipelined 
execution
– Streaming execution without microbatches

– Supports async checkpointing and ~1ms latency

– No changes required to user code

Tracked in SPARK-20928
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https://issues.apache.org/jira/browse/SPARK-20928


More Info
Structured Streaming Programming Guide

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

Anthology of Databricks blog posts and talks about 
structured streaming:

https://databricks.com/blog/2017/08/24/anthology-of-technical-assets-on-apache-sparks-structured-
streaming.html

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html


UNIFIED ANALYTICS PLATFORM

Try Apache Spark in Databricks!

• Collaborative cloud environment
• Free version (community edition)

DATABRICKS RUNTIME 
• Apache Spark - optimized for the 

cloud
• Caching and optimization layer - 

DBIO
• Enterprise security - DBES

Try for free today
databricks.com



https://spark-summit.org/eu-2017/

Discount code: 
Databricks 

https://spark-summit.org/eu-2017/


Pre-Spark Summit, Dublin
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