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Physics in 2D dimensions
No long-range order in 1D or 2D.

Increased role of thermal and quantum fluctuations

Peierls (1935), Mermim & Wagner (1966), Hohenberg (1967)

Many experimental systems: electron gas, graphene, colloidal
monolayer, polaritons, photonic crystals, liquid helium ...

No conventional phase transition. Topological phase transition
(Kosterlitz-Thouless Nobel 2016)

Topological matter is mainly 2D (quantum Hall effect, anyonic
statistics, ...). Strongly interacting phases.
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Bose-Einstein condensation (BEC) in 2D
BEC=macroscopic occupation of the single-particle ground
state.

Uniform ideal 3D gas at temperature T and 3D density n.

Set λT =
h√

2πmkBT

nexcλ
3
T ≤

∑
j>1

1

j3/2
is bounded. BEC possible

Uniform ideal 2D gas at temperature T and 2D density ρ.

ρexcλ
2
T ≤

∑
j>1

1

j
is not bounded. no BEC

BEC can be recovered for a trapped/finite-size system
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BKT phase transition
Berezinskii-Kosterlitz-Thouless prediction for an interacting
gas: Transition from a normal to a superfluid state below a
critical temperature Tc .

Tc

superfluid normal

vortex pairs free vortices

In the superfluid phase: quasi long-range order
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Quantum gases
Quantum regime for nλ3

T ≈ 1

Dilute: n ≈ 1020 m−3, and cold: T ≈ 100 nK

Weakly interaction na3 � 1 with a s-wave scattering length

Feshbach resonance to control interactions up to a =∞

Boson, Fermion, mixtures

Magnetic or optical trapping potential (mostly harmonic)

Tune dimensionality from 0D to 3D, lattice configuration
(Frozen degree of freedom: Eint, kBT � Econf)

Optical measurement of density and momentum distribution
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Quantum gases: some highlights
Single atoms in a lattice: quantum random walk via tunneling

Greiner’s group (MIT)



Quantum gases: some highlights
Fermion transport through a single channel: quantification of
conductance

Esslinger’s group (ETH Zurich)
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2D Bose gases in arbitrary time-dependent optical potentials
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A single layer of ultracold atoms

I ωz = 2π × 1.6 kHz
(⇒ ∆z ≈ 300 nm)

I T ≈ 10 nK

I n2D ≈ 30µm−2

I Atom number ≈ 105

I Spatial light modulator
(DMD) to shape the
potential.
(10 kHz refresh rate)

More details on the optical accordion: Ville et al. PRA 95, 013632 (2017)



A single layer of ultracold atoms

I ωz = 2π × 1.6 kHz
(⇒ ∆z ≈ 300 nm)

I T ≈ 10 nK

I n2D ≈ 30µm−2

I Atom number ≈ 105

I Spatial light modulator
(DMD) to shape the
potential.
(10 kHz refresh rate)

More details on the optical accordion: Ville et al. PRA 95, 013632 (2017)



Outline

I Physics in 2D dimensions

I Quantum gases

I Our setup

I Out-of-equilibrium dynamics

I Light scattering



Kibble-Zurek mechanism
Kibble-Zurek mechanism predicts the formation of topological
defects when quench cooling across a phase transition.

Thermalization time diverges around Tc

→ out-of-equilibrium situation
→ frozen dynamics
→ formation of independent domains



Kibble-Zurek mechanism
Kibble-Zurek mechanism predicts the formation of topological
defects when quench cooling across a phase transition.

Thermalization time diverges around Tc

→ out-of-equilibrium situation
→ frozen dynamics
→ formation of independent domains



Kibble-Zurek mechanism
Kibble-Zurek mechanism predicts the formation of topological
defects when quench cooling across a phase transition.

Thermalization time diverges around Tc

→ out-of-equilibrium situation
→ frozen dynamics
→ formation of independent domains



Kibble-Zurek mechanism

Zurek’s gedanken
experiment:

Zurek Nature 307, 505 (1985)

Domain size:

d ∝ τ
ν/(1+νz)
Q

ν: correlation length critical exponent
z : relaxation time critical exponent

Winding number:

〈n2
w 〉 ∝ dα

α = −1 for a ring (depends on
dimensionality).
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KZM in an atomic ring
Winding number distribution for different quench times

25 ms2 s

Average absolute winding number

Corman et al. PRL 113, 135302 (2014)



KZM in a bulk 2D geometry
Form domains with independent phases

After relaxation generation of bulk vortices

Chomaz et al. Nat. Commun. 6, 6162 (2015)
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Merging dynamics
Full control of KZ mechanism relies on a good understanding
of the relaxation dynamics
Crucial to be able to extract accurately critical exponents

I How does the phase homogenize ?

I How much time does it take to uniformize the phase ?

I Are the defects stable ?

I What are the underlying microscopic mechanisms ?

Merging N condensates with independent phases in a ring
geometry and monitor relaxation
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Related works
I Merging 3 BECs → vortices (Scherer et al. PRL 98, 110402 (2007))

I Merging 2 BECs → heating (Jo et al. PRL 98 180401 (2007))

πφ =Δ

=Δφ =Δφ

πφ =Δ

(b) (c)

I Connecting Josephson junctions (Carmi et al. PRL 84, 4966 (2000))

grain boundary

SQUID
pickup coil



Preparing independent BECs
We load a hot cloud in a N-segment configuration and
perform evaporative cooling down to T ≈ 10 nK.

N = 1 N = 3 N = 6 N = 9

We checked that:

I The two rings have independent phases

I Our results are independent of the separation between
domains in the range 2-3µm. (Here 2.5µm)



Merging
We merge the BECs by decreasing the barrier width in 10 ms.

We empirically chose 10 ms because

I Faster merging leads to additional excitations.

I Slower merging leads to asynchronous merging.

We wait for 500 ms to let the phase homogenize.



Detection
We perform matter-wave interference between the two rings

The number of spiral arms gives the winding number in the
outer ring

see also Eckel et al. PRX 4 031052 (2014) and Corman et al. PRL 113 135302 (2014)



The 3-segment case

∆φ1, ∆φ2 ∈ (−π, π]

I ν = +1 if ∆φ1 + ∆φ2 > π

I ν = −1 if ∆φ1 + ∆φ2 < −π
I ν = 0 otherwise
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Varying the number of segments

0 π 2π 3π-2π -π-3π

N=2

N=3

N=4

ν=0ν=-1 ν=1

p=1

p=3/4

p=2/3
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Varying the number of segments

Compute hypervolumes of
an hypercube

Already done by mathematicians !
Euler-Frobenius distribution gives:

νrms =

√
N

2
√

3
for N ≥ 3

with νrms the rms width of the
distribution.

S. Jansen, Online J. Anal. Comb. 8 (2013)



Results N segments

Vary number of segments N from 1 to 12.

The distribution broadens for increasing N



Results for N segments



Results for N segments



Timescales

Merging < Sound round-trip < Waiting < Lifetime

10 ms < 100 ms < 500 ms < 20 s



Two-step merging

10ms10ms
twait



Two-step merging



Two-step merging

Exponential fits : τ12 = 52(17) ms, τ6 = 90(30) ms
Shorter segments homogenize faster. Microscopic mechanism ?



Outline

I Physics in 2D dimensions

I Quantum gases

I Our setup

I Out-of-equilibrium dynamics

I Light scattering



Light transport

R0

R

Δz

Dense clouds. Many atoms on the scale λopt.
Multiple scattering regime. Many-body physics
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Fluorescence: experiment

Fluorescence signal

Local excitation:
disk diameter= 5µm

Measure fluorescence
(outside excitation region)

Light pulse:

duration=10µs, I ≈ 10Isat

Radially averaged profile
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Fluorescence signal

Local excitation:
disk diameter= 5µm

Measure fluorescence
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Radially averaged profile
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Atomic fluorescence

Get decay length from exponential fit,

≈ 1 − 2µm



Fluorescence: ballistic simulations

Simulations principle

Photons are emitted by a random direction
and diffuse on the first atom met.

Process is repeated until they leave the
cloud.

Probability distribution

1 2 3 4 5 6

r (µm)

10−5

10−4

10−3

P
(r

)

n2Dk
−2 = 0.53 ∆z = 0.40µm

fit

I Exponential decay

always the case for zero thickness and only

for large enough OD otherwise
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Fluorescence: influence of density

Simulations
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I plateau at large densities

I Comparable results with a more

complete model (coupled dipoles)
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Fluorescence: influence of detuning

Simulations

−10 −5 0 5 10
detuning (Γ/2)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

de
ca

y
le

ng
th

(µ
m

)

ballistic
coupled dipoles

I classical model is symmetric

I clear asymmetry with quantum

model

Experiments

−4 −3 −2 −1 0 1 2 3 4
detuning (Γ/2)

1.3

1.4

1.5

1.6

1.7

1.8

de
ca

y
le

ng
th

(µ
m

)

I asymmetric behavior with detuning

I in-plane guiding effect
(index of refraction gradient)

Guiding effects can be included in a modified ballistic model



Fluorescence: influence of detuning

Simulations

−10 −5 0 5 10
detuning (Γ/2)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

de
ca

y
le

ng
th

(µ
m

)

ballistic
coupled dipoles

I classical model is symmetric

I clear asymmetry with quantum

model

Experiments

−4 −3 −2 −1 0 1 2 3 4
detuning (Γ/2)

1.3

1.4

1.5

1.6

1.7

1.8

de
ca

y
le

ng
th

(µ
m

)
I asymmetric behavior with detuning

I in-plane guiding effect
(index of refraction gradient)

Guiding effects can be included in a modified ballistic model



Perspectives

I Investigate different geometries for merging

I Study quench dynamics through BKT phase transition
(infinite order)

I ...
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Mermin-Wagner-Hohenberg

For a system in dimension lower or equal to 2 and with
short-range interactions, there cannot be a spontaneous

breaking of a continuous symmetry at non-zero temperature.



Phase reference
Check that the inner ring as no phase winding

O
pt

. d
en

s.

1

0
10 μm

1.9s

I Cut the rings during evaporative cooling

I Close very slowly the rings

We detected 0 spiral pattern over 159 shots.



Special cases N = 1 and N = 2

No phase winding expected at
zero temperature.

We find :
P(0) = 98% P(±1) = 2%

Marginal situation at zero
temperature
Phase winding if ∆φ = π

We find :
P(0) = 84% P(±1) = 8%
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Influence of the merging time
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Lifetime
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the atomic lifetime.
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Superfluid current lifetime is very long (>10 s) and larger than
the atomic lifetime.
Clear illustration of topological protection !


