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Physics in 2D dimensions

No long-range order in 1D or 2D.
Increased role of thermal and quantum fluctuations
Peierls (1935), Mermim & Wagner (1966), Hohenberg (1967)

Many experimental systems: electron gas, graphene, colloidal
monolayer, polaritons, photonic crystals, liquid helium ...

No conventional phase transition. Topological phase transition
(Kosterlitz- Thouless Nobel 2016)

Topological matter is mainly 2D (quantum Hall effect, anyonic
statistics, ...). Strongly interacting phases.



Bose-Einstein condensation (BEC) in 2D

BEC=macroscopic occupation of the single-particle ground
state.

Uniform ideal 3D gas at temperature T and 3D density n.
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BEC=macroscopic occupation of the single-particle ground
state.

Uniform ideal 3D gas at temperature T and 3D density n.

Set A\ = h
T 2rmks T
1
Nexe NS < 2137 is bounded. BEC possible
j>1

Uniform ideal 2D gas at temperature T and 2D density p.

1
pexcAy < Y = is not bounded. no BEC

j>1

BEC can be recovered for a trapped /finite-size system
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BKT phase transition

Berezinskii-Kosterlitz-Thouless prediction for an interacting
gas: Transition from a normal to a superfluid state below a
critical temperature T..
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In the superfluid phase: quasi long-range order



Outline

» Physics in 2D dimensions

» Quantum gases

» Our setup

» Out-of-equilibrium dynamics

» Light scattering



Quantum gases

Quantum regime for n\3 ~ 1
Dilute: n~ 10 m~3, and cold: T =~ 100nK



Quantum gases

Quantum regime for n\3 ~ 1

Dilute: n~ 10 m~3, and cold: T =~ 100nK

Weakly interaction na® < 1 with a s-wave scattering length

Feshbach resonance to control interactions up to a = c©



Quantum gases

Quantum regime for n\3 ~ 1

Dilute: n~ 10 m~3, and cold: T =~ 100nK

Weakly interaction na® < 1 with a s-wave scattering length

Feshbach resonance to control interactions up to a = c©

Boson, Fermion, mixtures



Quantum gases

Quantum regime for n\3 ~ 1
Dilute: n~ 10 m~3, and cold: T =~ 100nK

Weakly interaction na® < 1 with a s-wave scattering length

Feshbach resonance to control interactions up to a = c©
Boson, Fermion, mixtures

Magnetic or optical trapping potential (mostly harmonic)

Tune dimensionality from 0D to 3D, lattice configuration
(Frozen degree of freedom: Ejng, kg T < Econt)



Quantum gases

Quantum regime for n\3 ~ 1
Dilute: n~ 10 m~3, and cold: T =~ 100nK

Weakly interaction na® < 1 with a s-wave scattering length

Feshbach resonance to control interactions up to a = c©
Boson, Fermion, mixtures

Magnetic or optical trapping potential (mostly harmonic)

Tune dimensionality from 0D to 3D, lattice configuration
(Frozen degree of freedom: Ejng, kg T < Econt)

Optical measurement of density and momentum distribution



Quantum gases: some highlights

Single atoms in a lattice: quantum random walk via tunneling

Greiner's group (MIT)



Quantum gases: some highlights

Fermion transport through a single channel: quantification of
conductance

Conductance G (1/h)

L - - o
0.0 0.5 1.0 15 20
Gate potential V, (1K)

Esslinger's group (ETH Zurich)
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A single layer of ultracold atoms
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A single layer of ultracold atoms

v

w, =27 X 1.6 kHz
(= Az =~ 300nm)

T ~ 10nK

nop =~ 30 um_2

v

v

Atom number ~ 10°

v
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Spatial light modulator
(DMD) to shape the

potential.
(10 kHz refresh rate)
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More details on the optical accordion: Ville et al. PRA 95, 013632 (2017)
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Kibble-Zurek mechanism

Kibble-Zurek mechanism predicts the formation of topological
defects when quench cooling across a phase transition.

T-T,
T

X / Tquench

time ¢

Thermalization time diverges around T,
— out-of-equilibrium situation

— frozen dynamics

— formation of independent domains

Freezing point

782N




Kibble-Zurek mechanism
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Zurek Nature 307, 505 (1985)




Kibble-Zurek mechanism

Zurek’'s gedanken
experiment:
Zurek Nature 307, 505 (1985)

Domain size:

v/(14+vz)
d x 7g

v: correlation length critical exponent
z: relaxation time critical exponent

Winding number:

(n2) o< d*

a = —1 for a ring (depends on
dimensionality).



KZM in an atomic ring

Winding number distribution for different quench times
1

1

2s 25ms

0.8 0.8
2 2
= 0.6 3 0.6
So.4 0.4
[ <]
a a
0.2 0.2
o= 0

Average absolute winding number

11

102 10" 10°
Tquench (ms

(INo])

10"

Corman et al. PRL 113, 135302 (2014)



KZM in a bulk 2D geometry

Form domains with independent phases




KZM in a bulk 2D geometry

Form domains with independent phases
¢ oo L

After relaxation generation of bulk vortices

Chomaz et al. Nat. Commun. 6, 6162 (2015)



Merging dynamics

Full control of KZ mechanism relies on a good understanding
of the relaxation dynamics
Crucial to be able to extract accurately critical exponents

v

How does the phase homogenize 7

How much time does it take to uniformize the phase 7
Are the defects stable ?

What are the underlying microscopic mechanisms ?

v

v

v



Merging dynamics

Full control of KZ mechanism relies on a good understanding
of the relaxation dynamics
Crucial to be able to extract accurately critical exponents

v

How does the phase homogenize 7

v

How much time does it take to uniformize the phase 7
Are the defects stable ?
What are the underlying microscopic mechanisms ?

v

v

Merging N condensates with independent phases in a ring
geometry and monitor relaxation



Related works

> Merglng 3 BECs — vortices (scherer et al. PRL 98, 110402 (2007))

.

» Merging 2 BECs — heating (o et a1 pri 98 180201 (2007))

(b) ©
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» Connecting Josephson junctions (carmi et sl PrL 84, 4966 (2000))
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Preparing independent BECs

We load a hot cloud in a N-segment configuration and
perform evaporative cooling down to T ~ 10nK.

O@O(O,

6 —

We checked that:
» The two rings have independent phases

» Our results are independent of the separation between
domains in the range 2-3 um. (Here 2.5 um)



Merging

We merge the BECs by decreasing the barrier width in 10 ms.

t=0ms t=5ms t=10ms
At s
i M E )
\ﬁ. .-‘f "1--;

10um

We empirically chose 10 ms because
» Faster merging leads to additional excitations.

» Slower merging leads to asynchronous merging.

We wait for 500 ms to let the phase homogenize.



Detection

We perform matter-wave interference between the two rings

v=-2 v=+3

T

The number of spiral arms gives the winding number in the
outer ring

see also Eckel et al. PRX 4 031052 (2014) and Corman et al. PRL 113 135302 (2014)



The 3-segment case

Ay s
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» v=—1if Ap1 +A¢p < —7

» v = 0 otherwise




The 3-segment case
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Varying the number of segments

N=3

N=2

H . H . i . i
-3n -21 -3t 0 £ 27 3m

vV=-1 V=0 V=1



Varying the number of segments

Compute hypervolumes of
an hypercube

x3

oLh (Y}

00,1) oy R

0,1,0)

©00) (1,00)

Already done by mathematicians !
Euler-Frobenius distribution gives:

Vrms:ﬂfOYNZ?)

2V/3

with s the rms width of the
distribution.

S. Jansen, Online J. Anal. Comb. 8 (2013)



Results N segments

Vary number of segments N from 1 to 12.

1 N= 1N=3 o~ 1 N6 2= | 1[n=o -
© Q Q (@)
05} 10.5¢F 1 0.5F H 4 0.5¢ R
0 0 iR 0 m ﬂ 0 ﬂﬂﬂm
-3 0 3 -3 0 3 -3 0 3 -3 0 3
v v v v

The distribution broadens for increasing N
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Timescales

Merging < Sound round-trip < Waiting < Lifetime

10 ms < 100 ms < 500 ms < 20s



Two-step merging



Two-step merging
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Two-step merging

é 0.75

0.5F

0 250 500
t _(ms)

wait

Exponential fits : 7, = 52(17) ms, 76 = 90(30) ms

Shorter segments homogenize faster. Microscopic mechanism ?
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Light transport

T ——Ro




Light transport

e

Dense clouds. Many atoms on the scale .
Multiple scattering regime. Many-body physics



Fluorescence: experiment

Fluorescence signal

Counts
30

20
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Local excitation:
disk diameter= 5 um
Measure fluorescence
(outside excitation region)
Light pulse:
duration=10 pus, | = 10/sat



Fluorescence: experiment

Fluorescence signal Radially averaged profile

Counts 20 . T T

30 —@— Residual light
) —@— Atomic fluorescence

5 15} 1

20
15
10

5pm 5

counts

0 2 4 6 8 10 12 14
radius (um))

Local excitation:
disk diameter= 5 um
Measure fluorescence
(outside excitation region)
Light pulse:
duration=10 pus, | = 10/sat




Fluorescence: experiment

Fluorescence signal Radially averaged profile
Counts 1 -
30 10"
25
20 i)
=1
15 g 10°% 1
10
¢
5pm 5 é
— ol

0 2 3 4 5 6 T 8 9 10
Local excitation: radius (m)
disk diameter= 5 pm Get decay length from exponential fit,
Measure fluorescence
(outside excitation region)
Light pulse:
duration=10 pus, | = 10/sat

~1—2pum




Fluorescence: ballistic simulations

Simulations principle

Photons are emitted by a random direction
and diffuse on the first atom met.

Process is repeated until they leave the
cloud.



Fluorescence: ballistic simulations

Simulations principle

Photons are emitted by a random direction
and diffuse on the first atom met.

Process is repeated until they leave the
cloud.

Probability distribution

1077

— napk 2 =0.53 Az =0.40 ym
— fit
T

1 2 3 1 5 6
r (um)

» Exponential decay

always the case for zero thickness and only

for large enough OD otherwise



Fluorescence: influence of density

Simulations

@ hballistic
© coupled dipoles
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» larger decay length at low densities
» plateau at large densities

» Comparable results with a more

complete model (coupled dipoles)



Fluorescence: influence of density

Simulations
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» larger decay length at low densities
» plateau at large densities

» Comparable results with a more

complete model (coupled dipoles)

Experiments
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» qualitative agreement

» limited optical resolution



Fluorescence: influence of detuning

Simulations
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» classical model is symmetric

» clear asymmetry with quantum

model



Fluorescence: influence of detuning

Simulations Experiments
14 T 1.8 T
—O@— ballistic
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» classical model is symmetric » asymmetric behavior with detuning
» clear asymmetry with quantum » in-plane guiding effect
(index of refraction gradient)
model

Guiding effects can be

included in a

modified ballistic model



Perspectives

» Investigate different geometries for merging

» Study quench dynamics through BKT phase transition
(infinite order)
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Mermin-Wagner-Hohenberg

For a system in dimension lower or equal to 2 and with
short-range interactions, there cannot be a spontaneous
breaking of a continuous symmetry at non-zero temperature.



Phase reference

Check that the inner ring as no phase winding

©
E
©

10 um
vur 0

» Cut the rings during evaporative cooling
» Close very slowly the rings

We detected 0 spiral pattern over 159 shots.



Special cases N =1 and N = 2

No phase winding expected at
zero temperature.

We find :
P(0) =98% P(£1) = 2%




Special cases N =1 and N = 2

No phase winding expected at
zero temperature.

We find :
P(0) =98% P(£1) = 2%

O

Marginal situation at zero

temperature
Phase winding if A¢p =7

We find :
P(0) = 84% P(+1) = 8%
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Influence of the merging time
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Lifetime
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Superfluid current lifetime is very long (>10s) and larger than
the atomic lifetime.



Lifetime

0.75 ¢
%] 4
E —
> o5f & \\
\></ 2
0.25¢ <
0
0 5 10
t(s)
0 1 1
0 5 10
t(s)

Superfluid current lifetime is very long (>10s) and larger than
the atomic lifetime.
Clear illustration of topological protection !



