Probing Higgs CP properties with Higgs signal rates using HiggsSignals-2

Tobias Klingl

in collaboration with

T. Stefaniak, P. Bechtle, S. Heinemeyer, G. Weiglein, D. Dercks Physikalisches Institut, Universität Bonn

IRN Terascale Meeting - Montpellier, 2017

1 HiggsSignals

- Motivation and Introduction
- Validation of 13 TeV data in HS-2

Probing deviations from the SM with HiggsSignals

- Higgs-coupling scale factors
- Pure CP even scenario
- CP mixing scenario

- The discovery of a Higgs boson by ATLAS and CMS $(m \approx 125 \text{ GeV})$ has opened a new era in particle physics!
- Thus far, it is in good agreement with the **Standard Model (SM) Higgs boson**.
 - \Rightarrow Standard model finally complete!
- Many well motivated BSM theories feature an extended Higgs sector.
 - ⇒ possible deviations in the couplings/signal rates from the SM Higgs, and/or additional Higgs states may be discovered in future LHC searches.

- The discovery of a Higgs boson by ATLAS and CMS $(m \approx 125 \text{ GeV})$ has opened a new era in particle physics!
- Thus far, it is in good agreement with the **Standard Model (SM) Higgs boson**.
 - \Rightarrow Standard model finally complete!
- Many well motivated BSM theories feature an extended Higgs sector.
 - ⇒ possible deviations in the couplings/signal rates from the SM Higgs, and/or additional Higgs states may be discovered in future LHC searches.
 - ⇒ model-independent tools to confront:

Theory predictions vs. Experimental results

precise predictions of Higgs signal rates and Higgs mass

> Theo. ↔ vs. Exp.

predictions for additional Higgs states

precision measurements of Higgs signal rates and Higgs mass

searches for additional Higgs states

precise predictions of Higgs signal rates and Higgs mass

HiggsSignals

Theo. ↔ vs. Exp. precision measurements of Higgs signal rates and Higgs mass

predictions for additional Higgs states

searches for additional Higgs states

4/26

precise predictions of Higgs signal rates and Higgs mass

HiggsSignals

Theo. ↔ vs. Exp. precision measurements of Higgs signal rates and Higgs mass

predictions for additional Higgs states

HiggsBounds

searches for additional Higgs states

precise predictions of Higgs signal rates and Higgs mass	HiggsSignals	precision measurements of Higgs signal rates and Higgs mass
	Theo. vs. Exp.	
predictions for additional Higgs states	HiggsBounds	searches for additional Higgs states

The HiggsSignals code

- Current version: HiggsSignals-1.4.0 (HiggsSignals-2.1.0beta)
- Website: http://higgsbounds.hepforge.org.
- Documentation:

Eur.Phys.J. C74 (2014) 2711 [arXiv:1305.1933] Eur.Phys.J. C74 (2014) 2693 [arXiv:1311.0055]

• Applications: [arXiv:1403.1582], [arXiv:1608.00638], + many more

HiggsSignals: Basic Idea

• Take predictions for physical quantities of given Higgs sector:

$m_k, \Gamma_k^{tot}, \sigma_i(pp \rightarrow H_k), BR(H_k \rightarrow XX),$

for each neutral Higgs boson k = 1, ..., N and production cross-section ($i \in \{ggH, VBF, WH, ZH, ttH\}$) as user input.

 $\bullet\,$ Calculate the predicted signal strength μ for every observable

$$\mu_{H_k \to XX} = \frac{\sum_i \epsilon^i_{model} \left[\sigma_i(pp \to H_k) \times \text{BR}(H_k \to XX) \right]_{model}}{\sum_i \epsilon^i_{SM} \left[\sigma_i(pp \to H) \times \text{BR}(H \to XX) \right]_{SM}}$$

(zero-width approximation $(\sigma \cdot BR)(i \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_{tot}}$ assumed)

• χ^2 test of model predictions against all available data from signal rate and mass measurements from the Tevatron and LHC.

Theoretical Input:

• Predictions for physical quantities of given Higgs sector:

 $m_k, \Gamma_k^{tot}, \sigma_i(pp \rightarrow H_k), BR(H_k \rightarrow XX),$

 σ , BR given via effective couplings or at hadronic level (using the HiggsBounds framework).

- Optional: Uncertainties for $m_k, \sigma_i(pp \to H_k), BR(H_k \to XX)$.
- Input for specific models can be provided by other tools (e.g. FeynHiggs, CPsuperH, 2HDMC, SARAH/SPheno, ...)

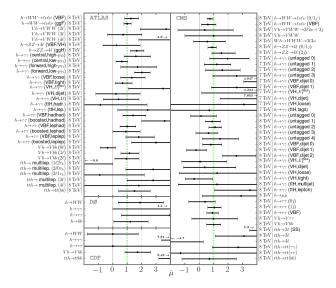
Experimental Input:

 Signal strength measurements (σ · BR)(ii → H → ff) (usually normalized to SM prediction) with efficiencies ε_i (fraction of events passing the analysis cuts). • Global χ^2 for the signal strength measurement is given by

$$\chi^2_{\mu} = (\hat{\mu} - \mu) (Cov)^{-1}_{\mu} (\hat{\mu} - \mu).$$

• Correlations of major systematic uncertainites are taken into account (if publicly known):

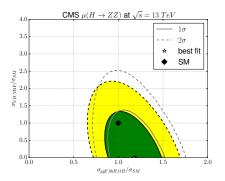
 $\Delta \sigma_i^{theo.}, \Delta BR_i^{theo}, \Delta \mathcal{L}, \dots$


• Correlations between different μ measurements $\Rightarrow (Cov)_{\mu}$

With increasing statistics, systematics will become more important!

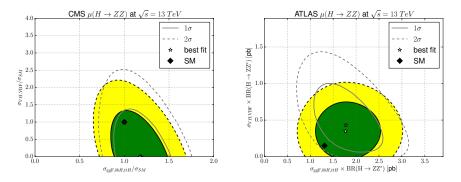
Validation of 13 TeV data in HS-2

Observables included in HiggsSignals


• HS-1.4.0: All μ measurements from the LHC at $\sqrt{s} = 7/8$ TeV and Tevatron.

Observables included in HiggsSignals

- HS-1.4.0: All μ measurements from the LHC at $\sqrt{s} = 7/8$ TeV and Tevatron.
- HS-2.1.0 (Beta): First LHC results at $\sqrt{s} = 13$ TeV included.



Reasonable agreement between the official contours (gray) and HS-2 contours (colored).
 ⇒ Could do better if CMS would provide mass dependence of μ for individual categories.

Observables included in HiggsSignals

- HS-1.4.0: All μ measurements from the LHC at $\sqrt{s} = 7/8$ TeV and Tevatron.
- HS-2.1.0 (Beta): First LHC results at $\sqrt{s} = 13$ TeV included.

- Reasonable agreement between the official contours (gray) and HS-2 contours (colored).
- \Rightarrow Could do better if CMS would provide mass dependence of μ for individual categories.
- Correlation between production modes not reproduced due to missing information.
- \Rightarrow Could do better if ATLAS would provide subchannel information (ϵ_i, μ_i) .

Probing deviations from the SM with HiggsSignals

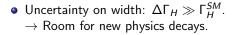
Higgs coupling scale factors

- Test the compatibility of the present data with the SM.
- What is the allowed range for possible deviations?

Coupling scale factors κ 's (phenomenological descripton)

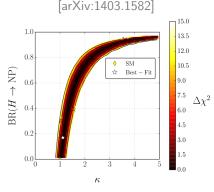
$$\sigma_{ii} = \kappa_i^2 \cdot \sigma_{ii}^{SM}, \qquad \Gamma_{ff} = \kappa_f^2 \cdot \Gamma_{ff}^{SM}$$

$$\Rightarrow (\sigma \cdot BR) (ii \to H \to ff) = (\sigma \cdot BR)^{SM} (ii \to H \to ff) \cdot \frac{\kappa_i^2 \cdot \kappa_f^2}{\kappa_H^2}$$

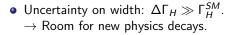

• Profile likelihood fits within the Higgs coupling scale factor parametrization (LHC Higgs XS WG [1307.1347]):

 $\kappa_Z, \kappa_W, \kappa_u, \kappa_d, \kappa_\ell, \dots$

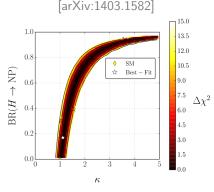
• Loop-induced couplings $\kappa_g^2 = \kappa_g^2(m_H, \kappa_i), i = t, b$ $\kappa_\gamma^2 = \kappa_\gamma^2(m_H, \kappa_i), i = t, b, \tau, W$


either be derived or be free parameters κ_g, κ_γ .

Total width of the Higgs boson at the LHC


• No model independent determination of $\kappa_H^2(m_H, \kappa_i) = \frac{\Gamma_H}{\Gamma_{\mu}^{SM}}$ at the LHC.

$$\frac{(\sigma \cdot BR)}{(\sigma \cdot BR)^{SM}}(ii \to H \to ff) = \frac{\kappa_i^2 \cdot \kappa_f^2}{\kappa_H^2}$$


 \Rightarrow Only ratios of scale factors can be measured at the LHC.

Total width of the Higgs boson at the LHC

• No model independent determination of $\kappa_H^2(m_H, \kappa_i) = \frac{\Gamma_H}{\Gamma_{\mu}^{SM}}$ at the LHC.

$$\frac{(\sigma \cdot BR)}{(\sigma \cdot BR)^{SM}}(ii \to H \to ff) = \frac{\kappa_i^2 \cdot \kappa_f^2}{\kappa_H^2}$$

- \Rightarrow Only ratios of scale factors can be measured at the LHC.
 - Possible assumptions to remove one dof:
 - No decays into states of new physics (NP)
 - $BR(H \rightarrow NP) = BR(H \rightarrow inv.)$ (Dark Matter?)
 - $\kappa_V \leq 1$ (well motivated by many BSM Modells)

Probing deviations from the SM with HiggsSignals: Pure CP even scenario

Probing deviations from the SM with HS

Motivation:

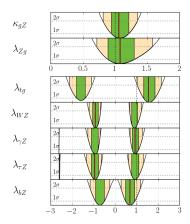
- **()** Validation of the implementation of the 7/8 TeV data in HS.
- Test: Do ATLAS and CMS provide enough information to reproduce their results?

Alternative parametrization in terms of ratios of κ 's:

- Reference channel $(\sigma \cdot BR)(gg \to H \to ZZ)$: $\kappa_{gZ} = \frac{\kappa_g \cdot \kappa_Z}{\kappa_H}$ (little background and one of the smallest overall sys. uncertainties).
- Probe of production measurements: $\lambda_{Zg} = \frac{\kappa_Z}{\kappa_{\sigma}}, \ \lambda_{tg} = \frac{\kappa_t}{\kappa_{\sigma}}$
- Decay modes $H \rightarrow ii$ $(i = W, \tau, b, \gamma)$: $\lambda_{iZ} = \frac{\kappa_i}{\kappa_Z}$
- Assumption: No Higgs decays into states of new physics.

Probing deviations from the SM with HS

Motivation:

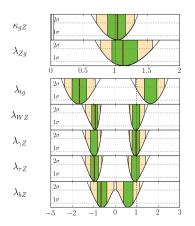

- $\textbf{O} \quad \text{Validation of the implementation of the } 7/8 \, \text{TeV data in HS}.$
- Test: Do ATLAS and CMS provide enough information to reproduce their results?

Alternative parametrization in terms of ratios of κ 's:

- Reference channel $(\sigma \cdot BR)(gg \to H \to ZZ)$: $\kappa_{gZ} = \frac{\kappa_g \cdot \kappa_Z}{\kappa_H}$ (little background and one of the smallest overall sys. uncertainties).
- Probe of production measurements: $\lambda_{Zg} = \frac{\kappa_Z}{\kappa_{\sigma}}, \ \lambda_{tg} = \frac{\kappa_t}{\kappa_{\sigma}}$
- Decay modes $H \rightarrow ii$ $(i = W, \tau, b, \gamma)$: $\lambda_{iZ} = \frac{\kappa_i}{\kappa_Z}$
- Assumption: No Higgs decays into states of new physics.
- \Rightarrow Use HiggsSignals to produce a fit of these parameter to ...
 - \bigcirc all signal rate measurements by ATLAS and CMS at 7/8 TeV.
 - ② the 7/8 TeV ATLAS + CMS combination data. [arXiv:1606.02266] (→ new routine included in HS-2).

• Experimental Input:

Individual signal rate measurements by ATLAS and CMS at 7/8 TeV.

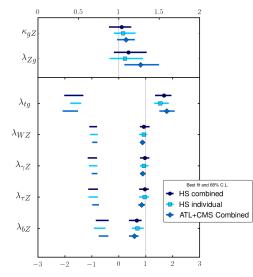

• Data is compatibles with the SM.

7/8 TeV

• largest deviation: λ_{tg} .

• Experimental Input:

Combined signal rate measurements from ATLAS and CMS at 7/8 TeV.



JHEP08(2016)045 [arXiv:1606.02266]

7/8 TeV

- Data is compatibles with the SM.
- largest deviation: λ_{tg} .
- $\Delta \chi^2$ profiles from fit to **combined** data are in very good agreement to fits to **individual** measurements!
- Still plenty of room for possible deviations.

Comparison to official ATLAS + CMS result

Good agreement with the official ATLAS + CMS result.

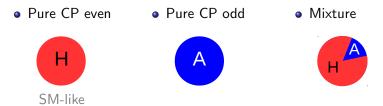
7/8 TeV

- Official 1σ intervals are slightly smaller for almost all parameters.
- Idea to explain the discrepancy: Uncertainties Δμ are assumed be Gaussian in HS.

Probing deviations from the SM with HS: CP mixing scenario

Spin 0 particle my be either

• Pure CP even


Spin 0 particle my be either

• Pure CP even • Pure CP odd

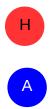
Spin 0 particle my be either

- Pure CP odd Higgs already excluded!
- CP mixing in the Higgs Sector can appear in many extension of the SM, e.g.
 - 2HDM
 - SUSY

Higgs couplings and CP properties

• SM predicts the couplings of the Higgs to all known particles SM Lagrangian: $\mathcal{L}_{SM} = \mathcal{L}_{YM} + \mathcal{L}_{ferm} + \mathcal{L}_H + \mathcal{L}_{Yuk}$ $\mathcal{L}_{Yuk} = -\overline{q_L}Y_u u_R \tilde{H} - \overline{q_L}Y_d d_R H - \overline{\ell_L}Y_\ell \ell_R H + h.c.$

• Example: SM coupling to $\tau: \overline{\tau_L} \mathbf{Y}_{\ell} \tau_R H$



Higgs couplings and CP properties

• SM predicts the couplings of the Higgs to all known particles SM Lagrangian: $\mathcal{L}_{SM} = \mathcal{L}_{YM} + \mathcal{L}_{ferm} + \mathcal{L}_H + \mathcal{L}_{Yuk}$ $\mathcal{L}_{Yuk} = -\overline{q_L}Y_u u_R \tilde{H} - \overline{q_L}Y_d d_R H - \overline{\ell_L}Y_\ell \ell_R H + h.c.$

• Example: SM coupling to $\tau: \overline{\tau_L} Y^s_{\ell} \tau_R H$

• CP-odd Higgs coupling to $\tau: \overline{\tau_L} Y_{\ell}^p \tau_R A$

Higgs couplings and CP properties

• SM predicts the couplings of the Higgs to all known particles SM Lagrangian: $\mathcal{L}_{SM} = \mathcal{L}_{YM} + \mathcal{L}_{ferm} + \mathcal{L}_H + \mathcal{L}_{Yuk}$ $\mathcal{L}_{Yuk} = -\overline{q_L}Y_u u_R \tilde{H} - \overline{q_L}Y_d d_R H - \overline{\ell_L}Y_\ell \ell_R H + h.c.$

• Example: SM coupling to $\tau: \overline{\tau_L} \mathbf{Y}^{\mathbf{s}}_{\ell} \tau_R H$

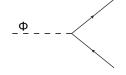
• CP-odd Higgs coupling to $\tau: \overline{\tau_L} Y_{\ell}^p \tau_R A$

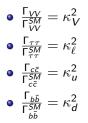
 Φ can be a mixture of a CP even scalar H and a CP odd pseudoscalar A

$$\Phi = \cos \alpha H + \sin \alpha A$$

Modified Yukawa Lagrangian:

$$\begin{array}{l} \text{CP even} \rightarrow \\ \text{CP odd} \rightarrow \\ \text{CP odd} \rightarrow \\ + h.c. \end{array} \overset{\mathcal{L}_{Yuk}}{=} - \frac{\kappa_{u_s} \overline{u_L} Y_u^{SM} u_R H - \kappa_{d_s} \overline{d_L} Y_d^{SM} d_R H - \frac{\kappa_{\ell_s} \overline{\ell_L} Y_\ell^{SM} \ell_R H}{\kappa_{d_p} \overline{d_L} Y_d^{SM} d_R A - i \kappa_{\ell_p} \overline{\ell_L} Y_\ell^{SM} \ell_R A} \\ + h.c. \end{array}$$


[arXiv:1211.1980]


• SM corresponds to: $\alpha = \kappa_{u_p} = \kappa_{d_p} = \kappa_{\ell_p} = 0$ and $\kappa_{u_s} = \kappa_{d_s} = \kappa_{\ell_s} = 1$

Pure CP even scenario

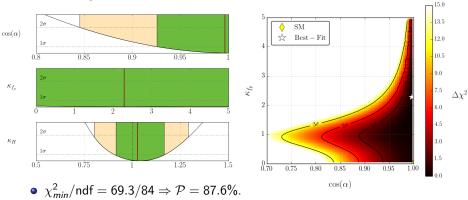
$$\Phi = H$$

Examples for tree-level partial decay widths

CP mixture scenario

$$\Phi = \cos \alpha H + \sin \alpha A$$

Examples for tree-level partial decay widths


•
$$\frac{\Gamma_{VV}}{\Gamma_{VM}^{VV}} = \kappa_V^2 \cdot \cos^2 \alpha$$

•
$$\frac{\Gamma_{\tau\tau}}{\Gamma_{\tau\tau}^{SM}} = \kappa_{\ell_s}^2 \cdot \cos^2 \alpha + \kappa_{\ell_p}^2 \cdot \sin^2 \alpha$$

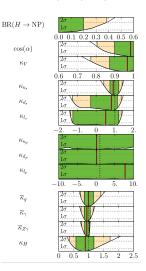
•
$$\frac{\Gamma_{c\bar{c}}}{\Gamma_{c\bar{c}}^{SM}} = \kappa_{u_s}^2 \cdot \cos^2 \alpha + R^{cc} \kappa_{u_p}^2 \cdot \sin^2 \alpha$$
 [arXiv:1211.1980]
•
$$\frac{\Gamma_{b\bar{b}}}{\Gamma_{b\bar{b}}^{SM}} = \kappa_{d_s}^2 \cdot \cos^2 \alpha + R^{bb} \kappa_{d_p}^2 \cdot \sin^2 \alpha$$
 (QCD Corrections $R^{ii} \approx 1$)

 $\Rightarrow \text{ fit parameters: } BR(H \rightarrow NP), \alpha, \kappa_V, \kappa_{\ell_s}, \kappa_{\ell_p}, \kappa_{u_s}, \kappa_{u_p}, \kappa_{d_s}, \kappa_{d_p}$

Φ

Simple example with SM scalar couplings

- Only two free parameters: $\cos \alpha$, κ_{f_p}
- No decays into states of new physics: $BR(H \rightarrow NP) = 0$.



• flat 1 dimensional $\Delta \chi^2$ profile for κ_{f_p} .

7/8 TeV + Tevatron

• $\kappa_V = \kappa_{f_s} = 1.$

- Free parameters: $\cos \alpha$, BR($H \rightarrow NP$), κ_V , κ_{u_s} , κ_{d_s} , κ_{ℓ_s} , κ_{u_ρ} , κ_{d_ρ} , κ_{ℓ_ρ}
- $\kappa_V \leq 1$
- $\kappa_{g}, \kappa_{\gamma}, \kappa_{Z\gamma}$ derived
- Couplings to pseudoscalar component flat.

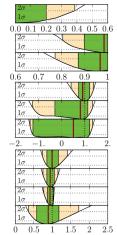
7/8 TeV + Tevatron

- Free parameters: $\cos \alpha$, BR($H \rightarrow NP$), κ_V , κ_{u_s} , κ_{d_s} , κ_{ℓ_s} , κ_{u_p} , κ_{d_p} , κ_{ℓ_p}
- $\kappa_V \leq 1$
- $\kappa_{g}, \kappa_{\gamma}, \kappa_{Z\gamma}$ derived
- Couplings to pseudoscalar component flat.
- Deviation from pure CP even Higgs still compatible with data.
- Negative values for κ_{u_s} strongly disfavored (H- γ effective couplings ($\kappa_V > 0$)).
- Sign degeneracy of κ_{d_s} slightly broken $(\kappa_g \text{ is sensitive to relative sign of } \kappa_t, \kappa_b).$
- Vanishing $\kappa_{\ell_s}, \kappa_{d_s}$ compatible with data.

$$\Rightarrow \chi^2_{min}/\mathsf{ndf} = 68.6/77 \Rightarrow \mathcal{P} = 74.2\%$$

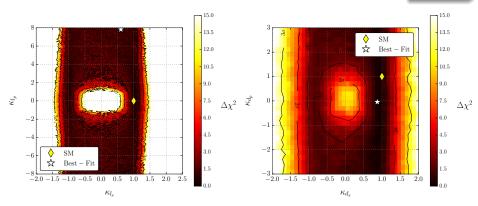
$$\cos(\alpha)$$

 κ_V
 κ_{u_s}
 κ_{d_s}
 κ_{l_s}

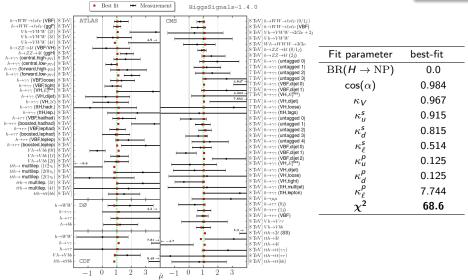

 $\overline{\kappa}_a$

 $\overline{\kappa}_{\gamma}$

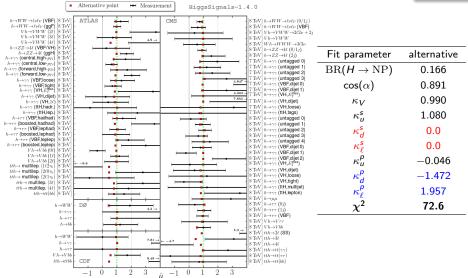
 $\overline{\kappa}_{Z\gamma}$


 κ_H

 $BR(H \rightarrow NP)$


7/8 TeV + Tevatron

7/8 TeV + Tevatron



• Vanishing couplings to scalar Higgs component can be compensated by non-vanishing coupling to the pseudoscalar component.

- HiggsBounds and HiggsSignals are excellent tools for confronting theory vs. experiment (also for extended Higgs sectors).
- Transparent information about signal efficiencies ε_i and correlations of systematic uncertainties is very valuable!
- Good agreement between HS-1 and official ATLAS+CMS result.
- For 13 TeV we miss some information in order to do better.
- Sizable CP-odd couplings of the Higgs are still allowed by signal rates.

Next Steps:

• Update of the results (+ additional parametrizations) including the latest Higgs signal rate measurements at 13 TeV!

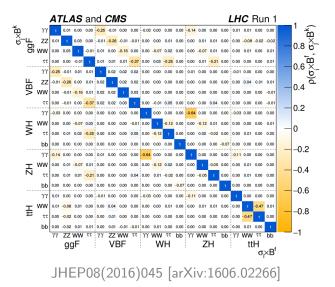
Available at http://higgsbounds.hepforge.org!

- HiggsBounds and HiggsSignals are excellent tools for confronting theory vs. experiment (also for extended Higgs sectors).
- Transparent information about signal efficiencies ε_i and correlations of systematic uncertainties is very valuable!
- Good agreement between HS-1 and official ATLAS+CMS result.
- For 13 TeV we miss some information in order to do better.
- Sizable CP-odd couplings of the Higgs are still allowed by signal rates.

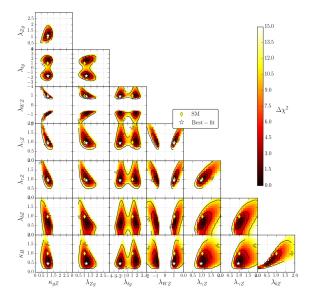
Next Steps:

• Update of the results (+ additional parametrizations) including the latest Higgs signal rate measurements at 13 TeV!

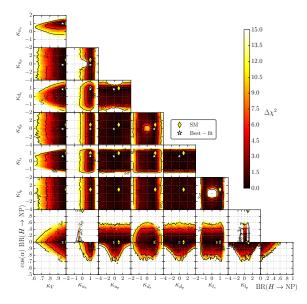
Available at http://higgsbounds.hepforge.org!

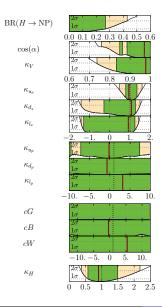

Thanks for your attention!

Backup: Combined measurements


Prod	uction							Decay	mode							
process		$H \rightarrow \gamma \gamma \text{ [fb]}$			$H \rightarrow ZZ$ [fb]			$H \rightarrow WW [pb]$			$H \rightarrow \tau \tau \text{ [fb]}$			$H \rightarrow bb$ [pb]		
		Best fit	Unce	rtainty	Best fit	Unce	rtainty	Best fit	Unce	rtainty	Best fit	Unce	rtainty	Best fit	Uncer	rtainty
		value	Stat	Syst	value	Stat	Syst	value	Stat	Syst	value	Stat	Syst	value	Stat	Syst
ggF	Measured	48.0 +10.0	+9.4 -9.4	+3.2 -2.3	580 +170 -160	+170 -160	+40 -40	3.5 +0.7	+0.5 -0.5	+0.5 -0.5	1300 +700 -700	+400 -400	+500 -500		-	
		(+9.7 (-9.5)	$\binom{+9.4}{-9.4}$	$\binom{+2.5}{-1.6}$	(+150 (-130)	$\binom{+140}{-130}$	$\binom{+30}{-20}$	(+0.7) (-0.7)	$\binom{+0.5}{-0.5}$	$\binom{+0.5}{-0.5}$	(+700 (-700)	$\binom{+400}{-400}$	$\binom{+500}{-500}$		-	
	Predicted	44 ±5			510 ±60		4.1 ±0.5			1210 ±140			11.0 ± 1.2			
	Ratio	1.10 +0.23 -0.22	$^{+0.22}_{-0.21}$	+0.07 -0.05	1.13 +0.34 -0.31	$^{+0.33}_{-0.30}$	+0.09 -0.07	$0.84 \substack{+0.17 \\ -0.17}$	$^{+0.12}_{-0.12}$	$^{+0.12}_{-0.11}$	$1.0 \ ^{+0.6}_{-0.6}$	$^{+0.4}_{-0.4}$	$^{+0.4}_{-0.4}$		-	
VBF	Measured	4.6 +1.9 -1.8	+1.8 -1.7	+0.6	3 +46 -26	+46 -25	+7 -7	0.39 +0.14 -0.13	+0.13 -0.12	+0.07 -0.05	125 +39 -37	+34 -32	+19 -18	-		
		$\binom{+1.8}{-1.6}$	$\binom{+1.7}{-1.6}$	$\binom{+0.5}{-0.4}$	$\binom{+60}{-39}$	$\binom{+60}{-39}$	$\binom{+8}{-5}$	(+0.15 (-0.13)	$\binom{+0.13}{-0.12}$	$(^{+0.07}_{-0.06})$	$\binom{+39}{-37}$	$\binom{+34}{-32}$	$\binom{+19}{-18}$		-	
	Predicted	3.60 ± 0.20			42.2 ±2.0			0.341 ±0.017			100 ± 6			0.91 ± 0.04		
	Ratio	1.3 +0.5 -0.5	+0.5	+0.2 -0.1	$0.1 \ ^{+1.1}_{-0.6}$	$^{+1.1}_{-0.6}$	$^{+0.2}_{-0.2}$	1.2 +0.4	$^{+0.4}_{-0.3}$	$^{+0.2}_{-0.2}$	$1.3 \substack{+0.4 \\ -0.4}$	$^{+0.3}_{-0.3}$	+0.2 -0.2		-	
WH	Measured	0.7 +2.1	+2.1	+0.3	-		0.24 +0.18 -0.16	+0.15 -0.14	+0.10 -0.08	-64 ⁺⁶⁴ ₋₆₁	+55 -50	+32 -34	0.42 +0.21 -0.20	+0.17 -0.16	+0.12	
		$\binom{+1.9}{-1.8}$	$\binom{+1.9}{-1.8}$	$\binom{+0.1}{-0.1}$			$\begin{pmatrix} +0.16 \\ -0.14 \end{pmatrix}$	$\binom{+0.14}{-0.13}$	$\binom{+0.08}{-0.07}$	$\binom{+67}{-64}$	$\binom{+60}{-54}$	$\binom{+30}{-32}$	$\begin{pmatrix} +0.22 \\ -0.21 \end{pmatrix}$	$\binom{+0.18}{-0.17}$	$\begin{pmatrix} +0.12 \\ -0.11 \end{pmatrix}$	
	Predicted	1.60 ± 0.09			18.8 ±0.9			0.152 ±0.007	44.3 ±2.8			0.404 ± 0.017			7	
	Ratio	$0.5 \stackrel{+1.3}{_{-1.2}}$	$^{+1.3}_{-1.1}$	+0.2 -0.2	-		$1.6^{+1.2}_{-1.0}$	$^{+1.0}_{-0.9}$	+0.6 -0.5	$-1.4 \substack{+1.4 \\ -1.4}$	$^{+1.2}_{-1.1}$	$^{+0.7}_{-0.8}$	$1.0^{+0.5}_{-0.5}$	+0.4 0.4	$^{+0.3}_{-0.3}$	
ZH	Measured	0.5 +2.9	+2.8 -2.3	+0.5	-		0.53 +0.23 -0.20	+0.21 -0.19	+0.10 -0.07	58 ⁺⁵⁶ -47	+52	+20 -16	0.08 +0.09	+0.08 -0.08	+0.04 -0.04	
		$\binom{+2.3}{-1.9}$	$\binom{+2.3}{-1.9}$	$\binom{+0.1}{-0.1}$			$\binom{+0.17}{-0.14}$	$\binom{+0.16}{-0.14}$	$\binom{+0.05}{-0.04}$	$\binom{+49}{-40}$	$\binom{+46}{-38}$	$\binom{+16}{-12}$	$\begin{pmatrix} +0.10 \\ -0.09 \end{pmatrix}$	$\binom{+0.09}{-0.08}$	$\binom{+0.08}{-0.04}$	
	Predicted	0.94 ±0.06			11.1 ±0.6			0.089 ±0.005			26.1 ±1.8			0.238 ±0.012		
	Ratio	0.5 +3.0	+3.0 -2.5	+0.5		-		5.9 +2.6	$^{+2.3}_{-2.1}$	$^{+1.1}_{-0.8}$	2.2 +2.2	+2.0 -1.7	$^{+0.8}_{-0.6}$	$0.4^{+0.4}_{-0.4}$	+0.3 -0.3	$^{+0.2}_{-0.2}$
ttH	Measured	$0.64 \substack{+0.48 \\ -0.38}$	+0.48 -0.38	+0.07 -0.04	-		0.14 +0.05	$^{+0.04}_{-0.04}$	+0.03	$-15 ^{+30}_{-26}$	+26 -22	+15 -15	0.08 +0.07 -0.07	+0.04 -0.04	+0.06	
		$\binom{+0.45}{-0.34}$	$\binom{+0.44}{-0.33}$	$\binom{+0.10}{-0.05}$	-		$\binom{+0.04}{-0.04}$	$\binom{+0.04}{-0.04}$	$\binom{+0.02}{-0.02}$	$\binom{+31}{-26}$	$\binom{+26}{-22}$	$\binom{+16}{-13}$	$\begin{pmatrix} +0.07 \\ -0.06 \end{pmatrix}$	$\binom{+0.04}{-0.04}$	$\binom{+0.06}{-0.05}$	
	Predicted	0.294 ±0.035			3.4 ±0.4			0.0279 ±0.0032	2		8.1 ± 1.0			0.074 ± 0.00	8	
	Ratio	2.2 +1.6	$^{+1.6}_{-1.3}$	+0.2 -0.1		-		5.0 +1.8 -1.7	+1.5 -1.5	$^{+1.0}_{-0.9}$	-1.9 + 3.7 - 3.3	$^{+3.2}_{-2.7}$	$^{+1.9}_{-1.8}$	$1.1^{+1.0}_{-1.0}$	+0.5 -0.5	$^{+0.8}_{-0.8}$

JHEP08(2016)045 [arXiv:1606.02266]


Backup: Covariance matrix


Backup: 2D profiles for λ -fit

Backup: 2D profiles for 'Yukawa structure'

Backup: Dimension-5 operators

$$egin{aligned} \mathcal{L}_{\textit{dim5}} &= rac{1}{4} rac{m{c}_{m{G}}}{(4\pi^2)m{v}} A G_{\mu
u} \widetilde{G}^{\mu
u} \ &+ rac{1}{4} rac{m{c}_{m{B}}}{(4\pi^2)m{v}} A B_{\mu
u} \widetilde{B}^{\mu
u} \ &+ rac{1}{4} rac{m{c}_{m{W}}}{(4\pi^2)m{v}} W B_{\mu
u} \widetilde{W}^{\mu
u} \end{aligned}$$

with
$$\widetilde{X}^{\mu\nu} = \epsilon^{\mu\nu\alpha\beta} X_{\alpha\beta}$$

A. Freitas, P. Schwaller [arXiv:1211.1980]