

Low-mass WIMP search with the EDELWEISS experiment

Romain Maisonobe

Institut de Physique Nucléaire de Lyon

IRN Terascale @ Montpellier – 3-5 July 2017

How to detect a WIMP χ ?

- χ production within particles collisions \rightarrow missing energy in final state,
- indirect detection within χ annihilation \rightarrow annihilation products in cosmic rays,
- direct detection by elastic scattering of χ on nuclei \rightarrow ionisation

Edelwerss Direct detection of Dark Matter

Edelwerss Direct detection of Dark Matter

IRN Terascale 2017

The EDW collaboration

CEA / Irfu / Iramis (Saclay) CSNSM (Orsay) Institut Neel (Grenoble) IPNL (Lyon) LPN (Marcoussis)

University of Oxford \sim University of Sheffield

Laboratoire Souterrain de Modane

8000

8000

Frejus

6000

Sudbury

10000

Edelwerss The EDELWEISS experiment

The set-up

Shieldings:

- Clean room,
- Muon veto (plastic scintillator modules),
- Polyethylene shield (external + internal),
- Lead shiel,
- Radiopure materials.

Towers:

- 24 cryogenic detectors,
- T = 18 mK.

Edelwess The EDELWEISS detectors

Heat channels:

- Measurement of phonon thermalization by two NTD (Neutron Transmutation Doped),
- **Δ**T = 0.1 μK/keV

Ionization channels:

- Charges collected by Al concentric electrodes (width = $150 \mu m$, gap = 2 mm),
- Surface events rejection.

Edelwess Detection within EDELWEISS-III

WIMP search in 2014-2015

161 days of physics data with 24 FIDs > 3000 kg.day

- 19 detectors used in first measurement of cosmogenic production of ³He in Ge,
- 8 detectors with lowest threshold used for low-mass WIMP search.

Likelihood analysis

Thanks to low gamma background (<0.1 DRU), variation of cosmogenic exposure of its different detectors and ionization energy resolution (200 eV RMS).

EDELWEISS-III is the first Ge experiment to measure precisely the intrinsic tritium beta activation rate at the surface (Q_{β} = 18.6 keV, $T_{1/2}$ = 12.32 y): **P** = 82 ± 21 nuclei/kg.d

Edelwerss EDELWEISS-III – Likelihood analysis

Description of the backgrounds

- electron recoils from ³H decay + Compton and cosmogenic gammas in the fiducial volume,
- surface gammas,
- nuclear recoils from neutron scattering,
- surface betas,
- ²⁰⁶Pb recoils,
- Heat-only events.

Total PDF for each detector:

$$\mathcal{P}_{\mathrm{tot}}(\sigma, \boldsymbol{\mu} \mid m_{\chi}) = rac{1}{
u} \left[\mu_{\chi} \mathcal{P}_{\chi}(m_{\chi}) + \sum_{\mathrm{i}} \mu_{\mathrm{i}} \mathcal{P}_{\mathrm{i}}
ight]$$

Extended likelihood function in heat and ionization energy: $\mathcal{L}(\sigma, \boldsymbol{\mu} \mid m_{\chi}) = \prod_{n=1}^{N} \mathcal{P}_{tot}(E_{heat}^{n}, E_{ion}^{n})$ $\times \prod_{i} Gauss(\mu_{i} \mid \mu_{i}^{exp}, \sigma_{i}) \times Poisson(N \mid \nu)$ S. 10^3 (keVee) s. 10^3 (keVee)

10 % of the signal density for a WIMP of 5 GeV.
90 % of the signal density for a WIMP of 10 GeV.

analysis threshold in heat energy

Edelwerss EDELWEISS-III – Likelihood analysis

Energy spectra in the two observables

Heat channel:

Dominated by exponential heat-only spectrum at energies near the analysis threshold.

Ion channel:

Separation between Gaussian heat-only noise around 0 keV_{ee} and the electron recoil background.

Edelwerss EDELWEISS-III – Likelihood analysis

Results from Likelihood

 $1.6x10^{-39}$ cm² at 4 GeV/c² to $6.9x10^{-44}$ cm² at 30 GeV/c².

(due to higher signal efficiency & background subtraction)

Improvement from the **BDT** analysis: $1.1 \cdot 10^{-36} \rightarrow 1.6 \cdot 10^{-37}$ at 4 GeV/c² $3.34 \cdot 10^{-42} \rightarrow 1.66 \cdot 10^{-42}$ at 8 GeV/c²

We are limited by heat-only background:

- Ionisation resolution to reject,
- Heat resolution for low thresholds.

Edelwess New EDELWEISS goal: 4x100

EDELWEISS-LT

Physics with low threshold (<100 eV):

- Amplify signal \rightarrow apply Neganov-Luke effect: $V_{\text{bias}} = 8 \rightarrow 100 \text{ V}$,
- Lower intrinsic heat threshold \rightarrow improve heat sensor, $\sigma_{phonon} = 500 \text{ eV} \rightarrow 100 \text{ eV}$,
- Heat-only background \rightarrow reduction by factor 100.

DMB8

Physics near the floor of ⁸B:

• Lower background at low energy \rightarrow HEMT transistor read out, $\sigma_{ion} = 200 \text{ eV} \rightarrow 100 \text{ eV}$.

Edelwerss R&D development: Neganov-Luke effect

High-voltage for Neganov-Luke amplification

$$E_{\text{heat}} = E_{\text{recoil}} + E_{\text{Luke}}$$

First measurement at the LSM with FID800 in 2015:

- Up to 100 V → boost by a factor of ~35,
- Heat resolution (keV_{ee}) improved by x35 best measurement of ionisation,
- Sensitivity goal: threshold < 100 eV_{NR} using improved phonon channel resolution,
- Ionisation signal redundant in HV mode (no particle discrimination) but provides detailed diagnostics of charge collection.

Edelwerss R&D development: heat sensor resolution

Optimisation of heat sensor – Thermal model

Better understanding of heat signal:

- Thermal modelling of signal,
- Identification of sensitivity to ballistic phonons,
- Identification of parasitic heat capacity.

Sensitivity of 200 nV/keV achieved with 200 g test detector.

Edelwess R&D development: heat-only events

Origins investigations

- HO background: dominant and reproducible at low energy,
- Studied hypotheses: noise, cryogenics, stress from detector suspension, glue...
- New detectors configurations and set-up to test hypotheses:
 - Deported NTD, glued on separated sapphire wafer,
 - Photo-lithographed high-impedance NbSi TES, sensitive to athermal phonons,
 - 4 new designed detectors have been tested at LSM.

Edelwe'ss R&D development: HEMT read-out

Improvement of ionisation read-out

Change from JFET to HEMT (High Electron Mobility Transistor): Counts

- Reduced intrinsic noise,
- Lower heat load,
- Operates at 4K stage:
 - shorter cabling, Ο
 - reduced capacitance, Ο
 - better signal-to-noise ratio. 0

- Upgrade EDW ionisation read-out with this new design,
- Electrode design to reduce detector capacitance to reach 50 eV_{RMS} .

A. Phipps et al., arXiv:1611.09712 JLTP (2016) 184:505

0.3

0.6

IRN Terascale 2017

Edelwess Conclusion and outlook

Results and perspectives

EDELWEISS-LT:

- 2017-2018
- Low-mass program at LSM (350 kg·day)
- R&D on HV, HEMT, sensors, heat-only

EDELWEISS-DMB8:

- Beyond,
- Explore the ⁸B region with discrimination.

