

Dark matter line searches towards the Galactic Center halo with H.E.S.S.

IRN Terascale, 3-5 July 2017, Montpellier

Lucia Rinchiuso, Emmanuel Moulin

H.E.S.S

Dark matter detection

L. Rinchiuso & E. Moulin – DM line searches towards the GC halo with H.E.S.S., IRN 3-5 July 2017 2

Why gamma-rays ?

- Exploit the annihilation of the dark matter (DM) into Standard Model (SM) particles, which are detectable
- DM properties can be inferred from DM annihilation products
- Gamma-rays are not bent in magnetic fields, so they point back to the source
- Through gamma-rays detection from DM annihilation, in principle, the DM distribution in the universe can be mapped

- The environment with highest expected DM content can be pointed with the telescopes
- The most promising candidates for DM particles (WIMPs) most likely lie in the mass range GeV-TeV, probed by very-high-energy (VHE) gamma-rays detectors

The H.E.S.S. experiment

An array of 5 Imaging Atmospheric Cherenkov Telescopes in Namibia

H.E.S.S. phase I (since 2003)

- four 12 m Ø telescopes
- FoV 5 deg
- energy range 100 GeV-100 TeV
- angular resolution < 0.1 deg
- about 1000 observation h/yr
- stereoscopic reconstruction

H.E.S.S. phase II (since 2012)

- same four 12 m Ø telescopes
- one additional 28 m Ø telescope (FoV 3.5 deg)
- energy threshold lowered
- angular resolution from 0.4 deg to less than 0.1 deg

L. Rinchiuso & E. Moulin – DM line searches towards the GC halo with H.E.S.S., IRN 3-5 July 2017 4

H.E.S.S. phase II

Dark matter annihilation signal

Particle physics term:

- thermally-averaged velocity-weighted annihilation cross section (σv)
- dark matter mass m_{DM}
- Flux: sum of the channels weighted on their branching ratio
- annihilation spectrum dN/dE'

Astrophysics term: J-factor

$$J(\Delta \Omega) = \int_{\Omega} \int_{los} \rho^2(s, \Omega) ds d\Omega$$

with:

- s position along the line of sight,
- Ω solid angle,
- ρ DM density profile

Dark matter annihilation signals in gamma-rays

- 1. Continuum: hadronization and/or decay of W/Z, quarks, leptons...
- Line from prompt annihilation in two photons not at tree level: suppressed ——> but clear signature at DM mass !
- 3. Final state radiation
- 4. Virtual internal bremsstrahlung

Thermal relic cross section for WIMPs:

- For the continuum signal : $\langle \sigma v \rangle \sim 3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$
- For the prompt line signal : $\langle \sigma v \rangle \sim 10^{-29} \text{cm}^3 \text{s}^{-1}$

Dark matter annihialiton signals

- 1. Continuum: hadronization and/or decay of W/Z, quarks, leptons...
- 2. Line from prompt annihilation in two photons
- 3. Final state radiation
- 4. Virtual internal bremsstrahlung

The spectral information can be exploited for a better signal vs background discrimination (energy binning in the likelihood)

Dark matter targerts VHE gamma-ray searches

Galaxy satellites of the Milky Way

- Many of them within the 100 kpc from GC
- High M/L
- Low astrophysical background
- o DM dominated

Galactic Centre (GC)

- Proximity (~8kpc)
- Possibly high DM concentration :
 - DM profile : core? cusp?
- o High astrophysical
 - bck / source confusion

Compromise to maximize the quantity of DM signal (large J-factor and limited distance) wrt background (astrophysics sources) Substructures in the Galactic halo • Lower signal • Cleaner signal (once found)

Galactic halo
Large statistics
Galactic diffuse background

Aquarius, Springel et al. Nature 2008

- DM density profile matters
- Astrophysical background matters as well

Dark matter distribution in the Galactic Centre region

parametrized with
$$\label{eq:alpha} \begin{split} &\alpha = 0.17 \\ &r_s = 21 \ \textit{kpc} \\ &\rho_s = 0.07 \ \textit{GeV}\textit{cm}^{-3} \end{split}$$

as used in HESS GC 2011, 2013 papers

 Spatial information can be used to discriminate from the <u>isotropic</u> <u>residual background</u> via spatial binning in the likelihood

Data set

- 10-year observations with H.E.S.S. 1 toward the GC
 - same dataset as used in the 2016 DM continuum paper at GC halo
 - zenith angle on average 19 deg
- Gamma-ray statistics : 254 h compared to 112 h (2011/2013 papers)
- GC region is a crowded environment at VHE

Region of interest (Rol) definition

- Excluded region ±0.3°: dominated by astrophysical sources and diffuse emission
- Whole region of Interest (RoI) : 1° in radius (like in 2013 paper)
- Rol divided in 7 sub-regions of 0.1°: spatial binning

Dark Matter signals and J-factors

We assume <u>cusped</u> <u>DM</u> density <u>profiles</u>, e.g. the Einasto, NFW, ...

i th Rol	J-factor (10 ²⁰ GeV ² cm ⁻⁵)			
	Einasto	NFW	Einasto modified	
1	4.3	2.5	1.3	
2	5.6	3.0	1.7	
3	6.6	3.3	2.0	
4	7.4	3.5	2.3	
5	7.9	3.6	2.5	
6	8.3	3.7	2.6	
7	8.7	3.8	2.8	

Rol definition and background measurement

- OFF regions are chosen symmetrically to ON regions with respect to the pointing position
- Overlapping areas are discarded to maintain the dark matter gradient

ON and OFF measurements

Rol	Measured OFF	Measured ON
1	5500	5794
2	11091	11616
3	16289	16916
4	21216	21581
5	22817	23175
6	23645	24255
7	25079	25868

- No significant excess in the ON pdfs w.r.t. OFF pdfs
- => limits can be derived on the DM annihilation cross section

Gamma line rate

$$N_{ij}^{\gamma} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{DM}^2} \int \frac{dN}{dE'} R(E, E') T_{obs} A_{eff}(E) dE' \times J(\Delta \Omega)$$

 $R(E,E') = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(E-E')^2}{2\sigma^2}}$

Spectrum : Dirac delta function at m_{DM}

$$\frac{dN}{dE'} = 2\delta\bigl(E'-m_{DM}\,\bigr)$$

Energy resolution

Gaussian resolution

with $\sigma = 10\% E$

- almost independent of the offset and the azimuthal angle

2D-binned likelihood analysis

• Likelihood function binned in energy (bin j) and space (RoI, bin i) $\mathcal{L}_{ij}(N_{ON}, N_{OFF} | N_S, N_B) = \frac{(N_S + N_B)^{N_{ON}}}{N_{ON}!} e^{-(N_S + N_B)} \frac{(N_S' + N_B)^{N_{OFF}}}{N_{OFF}!} e^{-(N_B + N_S')}$ where expected N_B obtained from dL/dNB = 0

$$\boldsymbol{\mathcal{L}} = \prod_{i,j} \boldsymbol{\mathcal{L}}_{ij}$$

N_{ON} Observed signal (ON region) N_{OFF}Observed background (OFF region)

- N_s Line signal (expected in ON)
- N'_{S} Line signal (expected in OFF)
- N_B Expected background

Test statistics: likelihood-ratio test

$$TS = -2\log\frac{\mathcal{L}_{W}}{\mathcal{L}_{WO}} = -2\log\frac{\mathcal{L}(N_{ON}, N_{OFF}|N_{S}, N_{S}', N_{B})}{\mathcal{L}(N_{ON}, N_{OFF}|N_{B})}$$
 TS = 2.71 for a 95% CL limit

Sensitivity: expected limit

- Expected limit computed from blank-field observations at high Galactic latitudes:
 - Gamma-ray background taken from all the extragalactic runs (|b|>10°) after quality checks
- Expected GC background estimated in the same observation conditions on a run by run basis from the GC run list

Rol	Measured OFF	Expected OFF
1	5500	6060
2	11091	11823
3	16289	16254
4	21216	20726
5	22817	22893
6	23645	24658
7	25079	27091

Sensitivity: expected limit

- 1000 Poisson realizations are made on this background
- The likelihood analysis is applied on each realisation
- From the distribution of the annihilation cross section values obtained in each realisation for each mass
- the mean expected limit is extracted as the mean of the distribution
- the 68% and 95% containment band are computed from the standard deviation of the distribution

Comparison of the mean expected sensitivity on the flux with previous H.E.S.S. results

- Improvement of a factor about 8 observed @ 1 TeV on the mean expected limits
- Improvement from the analysis: exclusion regions, 2D approach, implementation of the background, and higher statistics (*stats* $\propto \sqrt{T_{obs}}$)
- Remaining improvement from new raw data analysis

Expected mean sensitivity on σv with previous H.E.S.S. results

- best limit 2x10⁻²⁸cm³s⁻¹
 @1TeV
- mass range extended down to 300 GeV and up to 70 TeV
- lower energy threshold thanks to the improved raw data analysis: best limit shifted down to lower masses

<u>Comparison of the expected mean sensitivity on σv</u> with previous results by other experiments

- best limit 2x10⁻²⁸cm³s⁻¹
 @1TeV
- lower energy threshold thanks to the improved raw data analysis: best limit shifted down to lower masses
- Fermi-LAT limits surpassed of a factor about 6 @300 GeV

Summary

- Full H.E.S.S.-I GC dataset analysis for dark matter line searches in the inner GC halo in the DM mass range 300 GeV – 70 TeV
- Improvement at 1 TeV with respect to 2013 results is about 8 on the mean expected sensitivity
 - higher photon statistics
 - higher sensitivity of the new raw data analysis
 - 2D likelihood approach
- Next step :
- Follow-up study with H.E.S.S.-II data: more statistics and extended pointings from IGS
- Tests of different DM models (wino, 3-plet, 5-plet) can be performed
- Methodology is useful for other target fileds

