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Direct	dark	matter	detection	principle
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Direct	dark	matter	detection	principle
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𝜒 +	N	→	𝜒 +	N	

Nucleus Recoil	energy
~1-100	keV
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How	is	evolving	the	field	of	Direct	Detection	?
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Direct	detection	:	progress	over	time
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~ 1 event.kg-1.day-1

~ 1 event.kg-1.yr-1

~ 1 event.t-1.yr-1
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The	fight	against	the	background
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• Avoid background 

• External g’s from natural radioactivity
- Material screening
- Self shielding (fiducialization)

• External neutrons 
muon-induced (a,n) and fission reaction

- Material screening (low U and Th)
- Underground experiments
- Shield & active veto

• Internal contamination
- 85Kr : removed by cryogenic distillation
- 222Rn : removed by cryogenic distillation
- 136Xe : bb decay, long lifetime (T1/2 = 2.2x1021 years)

• Use WIMP properties

- No double scatter
- Homogeneously distributed

à Position reconstruction 
- Nuclear recoils

à ER/NR Discrimination



Noble	gases
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Neon Argon Krypton Xenon

Atomic	Number 10 18 36 54

Density 1.2 1.4 2.4 3

Scintillation	(g/keV) 30 40 25 42

Wavelength (nm) 85 128 150 178

Decay	Time (ns) 15400 6.3, 1500 2,	91 2.2,	27,	45

Ionization	(e-/keV) 46 42 49 64

Boiling	Point	(K) 27.1 87.3 119.8 165.0

Radioactivity No 39Ar
1Bq/kg

(1mBq/kg)

Yes 136Xe	/
Kr	can	be	
removed	to	
ppt level

Price $$ $	 ($$$) $$$ $$$$



Why	Xenon	?
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- Large mass number A (131) (Interaction  
cross section ∝ A2)

- 50% odd isotopes (129Xe, 131Xe) for Spin-
Dependent interactions

- Kr can be reduced to ppt levels

- High stopping power, i.e. active volume is 
self-shielding

- Efficient scintillator (178 nm)

- Scalable to large target masses

- Electronic recoil discrimination with 
simultaneous measurement of scintillation 
and ionization

m� = 100 GeV



Scintillation	and	ionization	in	noble	liquids
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• Energy deposit produce both:
- Electron-ion pair
- Excited atom states

• Anti-correlation between charge and light
à Improve energy resolution

• Excitation depends on dE/dx
à Discrimination capabilities
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Dual	phase	TPC:	principle

S1 S2

Drift time
𝜒/	n

Nuclear 
Recoil

S1 S2

Drift timeγ /	𝛽

Electronic 
Recoil

S1:
à Photon (l = 178 nm)

from Scintillation process
S2:
à Electrons drift
à Extraction in gaseous phase
à Proportional scintillation light

3D reconstruction :
à X,Y from top array
à Z from Drift time

à Dectected by PMTs
(mainly botton array)
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TPC = Time Projection Chamber



Dual	phase	TPC:	real	life
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ER
NR

S1
(light)

S2
(charge)

ER

NR

S1
light	
signal

S2
charge
signal

Dt = 151 µs

Z	position	from	
drift	time

X	and	Y	position	from S2	hit	pattern	on	the	top	PMTs



How	is	evolving	the	field	of	Direct	Detection	?
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XENON	World

23	Institutions
10	Countries
135	Scientists



Phases of the XENON Program

XENON10
2005 – 2007

15 cm drift TPC
Total: 25 kg

Target: 14 kg
Fiducial: 5.4 kg

Achieved (2007)
σSI = 8.8 · 10-44 cm2

@ 100 GeV/c2

XENON100
2008 – 2016

30 cm drift TPC
Total: 161 kg
Target: 62 kg

Fiducial: 34/48 kg

Achieved (2016)
σSI = 1.1 · 10-45 cm2

@ 55 GeV/c2

XENON1T
2012 – 2019

100 cm drift TPC
Total: 3 200 kg

Target: 2 000 kg
Fiducial: 1 000 kg

Projected (2018)
σSI = 1.6 · 10-47 cm2

@ 50 GeV/c2
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XENONnT
2017 (R&D) – 2023

144 cm drift TPC
Total: 8 000 kg

Target: 6 000 kg
Fiducial: 4 500 kg

Projected (2022)
σSI = 1.6 x 10-48 cm2

@ 50 GeV/c2



XENON1T facility
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Water shield: deionized water as
passive radiation shield
Muon veto: Active muon veto against
muon induced neutrons (84 PMTs)

Cryogenics: Stable conditions(3.2t LXe)
Purification: LXe flow through getters,
remove impurities

DAQ: Each channel has its own
threshold, Flexible software algorithms
Readout: Up to 300MB/s for high rate
calibrations

ReStoX: Emergency recovery up to 7.6
tons of LXe
Passive: No active cooling required to
keep Xe contained

Kr Distillation: Remove Kr from system
during fill or online
Rn Distillation: Initial tests show
promising reduction for Rn



TPC
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The largest Xe double-phase TPC ever built !

• Active Xe mass: 
2 tons.

• Light sensors: 
127+121 3” PMTs 
average QE = 35%

• Fully covered with
high reflectivity PTFE 
to maximize light 
collection.

• Drift region: 
1m height,
1m diameter.

JINST 8 P04026 (2013)
Eur. Phys. J. C75 (2015) 11, 546



Water Shield filling
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Rate decrease with 
increasing Water level

• TPC fully immersed in water since July 2016
• Background studies and calibration runs started



Muon Veto Cherenkov Detector
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JINST 9 P11006 (2014)

• The cryostat is immersed in a water shield  
filled with 700 tons of water

• Deionized water is used as passive shield  
from environmental radiation

• Water is constantly purified 

• Equipped with 84 high-QE, 8'' PMTs

• All walls are covered with reflective foil  
Detects Cherenkov light to tag muons.

• Expected muon flux underground is  1.2
/m2h-1 → muon-induced neutron 
background is reduced to less than 0.01 
ev/y thanks to muon tagging

• No coincidences with TPC found in this 
science run



XENON Plants
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Cryostat

Cryogenics

Purification

Distillation ReStoX
(Recovery & Storage)



Xenon Cooling System
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Goal: liquefy 3200 Kg of Xe and maintain the xenon in the cryostat in liquid form, at a constant
temperature and pressure, and so for years without interruption.
Redundant

PTR
Backup LN2

Heat Exchangers

LXe flow back
to cryostat

GXe flow to active cooling tower(s)
Main features:

Vacuum
insulation

LXe circulation

Connection
to cryostat

TPC PMT
cables

PTR
Design goals:
● Stable temperature and pressure control

Reliable, continuous, long term operation
Resilience to unexpected failures
High speed circulation with low additional
heat load

●

●

●

● Redundant PTR cooling
systems
Backup LN2 cooling tower
Efficient two-phase heat
exchangers
One PTR can be serviced
while the other is in
operation

●

●

●



Detector Stability
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• LXe temperature stable at -96.07℃, RMS 0.04℃

GXe pressure stable at 1.934 bar, RMS 0.001 bar•

Slow control/Historian monitoring



Xenon purification
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Goal: remove electronegative impurities
below 1 ppb (O2 equivalent) in the Xe
gas fill and from outgassing of
detector’s components with continuous
circulation of Xe gas at high speed through
hot getters

Performance: evolution of e-lifetime,
monitored regularly with ERs
calibration sources, well described by
physical model. Current value
approaching the max drift time of the
LXeTPC.



Background Reduction: 85Kr
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• Commercial Xe contains ~ ppb of Kr 
• Column principle : remove Kr from Xe by means of cryogenic 

distillation (gases have different boiling points)
• >6.4×105 separation, output concentration < 0.048 ppt
• 5.5 m column, 6.5 kg/hr,

• New approach: 
Online Distillation

• Successfully reduced Kr
to (0.62 +- 0.13) ppt
measured by RGMS

• Background is now 
radon dominated

arXiv:1702.06942
Eur. Phys. J. C77 (2017) no.5, 275



Recovery and Storage System: ReStoX
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Double walled, high pressure (72 bar)  
vacuum insulated sphere of 2.1 meter  
diameter, cooled by LN2 and by an
internal LN-based condenser.

Goals:  
- Store up to 7600 kg of Xe in gaseous or liquid/solid phase under high purity conditions 
- Fill Xe in ultra-high-purity conditions into detector vessel 
- Recover all the Xe from the detector. In case of emergency all Xe can be safely 
recovered in a few hours



Science Run: Exposure
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SR0: 34.2 live-days 
(analyzed)

SR1: > 80 live-days 
(blinded)

ea
rt
hq

ua
ke
,J
an
ua
ry

th
e
18
th

• Dark matter exposure: 34.2 Live days

• Calibration Data:
• 83mKr è Spacial Response
• 220Rn è ER-Bands
• 241AmBe è NR-Bands

• Interrupted by a 5.5 magnitude earthquake



Energy Response
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• Excellent linearity with electronic recoil 
energy from 40 keV to 2.2 MeV

• g1 = 0.1442 ± 0.0068 (sys) PE/photon 
corresponds to a photon detection 
efficiency of 12.5 ± 0.6% (taking into 
account double PE emission)
Assumptions of past MC sensitivity
projected 12.1%.

• g2: the amplification of charge signal 
corresponds to near full extraction of 
charges from the liquid.

E = (n + n ) · W = (S1 + S2) · W
ph e g1 g2



Light/Charge Yield Stability
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Kr83m

From Kr83m and activated Xe131m, variation in LY and CY is at ~1% level.

Kr83m



83mKr Calibration
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Light collecIon efficiency maps

• Signal corrections:
o Position dependent light 

collection efficiency
o Position dependent S2 

amplification
o Electric field non-uniformity

• Electron lifetime cross-check
• Light/Charge yield stability



Efficiencies
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• Detection efficiency dominated by 3-fold 
coincidence requirement

o Estimated via novel waveform
simulation including systematic
uncertainties

• Selection efficiencies estimated from 
control samples or simulation
Data quality and selecIon cuts tuned to 
calibraIon data o single scaRer (WIMP-
like) events

• Search region defined within 3-70 PE 
in corrected S1

Cuts Events
remaining

All events (cS1<200 PE) 128144

Data Quality & Selection 48955

Fiducial Volume 180

3 PE < cS1 < 70 PE 63

1042 kg



Fitting Models to Calibration
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• Full modeling of LXe and detector
response in cS2b vs cS1 space

All parameters fitted with no
significant deviation from priors

•
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Phys. Rev. D 95, 72008 (2017)



Background Model
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ER

n

acc

ν

wall
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Total
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/
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Reference: 
NR median - 2σ

Background Total NR median - 2σ, 3-70pe

Electronic Recoil (62	± 8) 0.26	(+0.11)(-0.07)

Radiogenic neutrons (n) (0.05 ± 0.01) 0.02

CNNS (ν) 0.02 0.01

Accidental coincidences (acc) (0.22 ± 0.01) 0.06

Wall leakage (wall) (0.52 ± 0.32) 0.01

Anomalous (anom) 0.09 (+0.12)(-0.06) (0.01 ± 0.01)
Total background
50 GeV/c2 , 10−46cm2WIMP

(63 ± 8)
(1.66 ± 0.01)

(0.36 ± 0.09)
(0.82 ± 0.06)

• ER and NR spectral shapes derived
from models fitted to calibration data

• Other background expectations are
data-driven, derived from control
samples



Dark Matter Search
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• Extended unbinned profile likelihood analysis
• Most significant ER & NR shape parameters included from cal. fits
• Normalization uncertainties for all components
• Safeguard to protect against spurious mis-modeling of background
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XENON1T Results
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World Best sensitivity
Minimum @ 35 GeV/c2 : 7.7x10-47cm2



From XENON1T to XENONnT
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From XENON1T to XENONnT
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All major systems remain unchanged,
XENON1T infrastructure designed for the
rapid deployment of an upgraded detector

• Muon veto efficiency essentially the
same for XENONnT

• Cryostat support and levelling systems
designed for an enlarged detector

• Cryostat outer vessel can accommodate
new larger inner vessel

• Cryogenic system designed to handle
additional heat load

• Modular and scalable GXe purification
system

• Kr distillation column can fulfill
XENONnT 85Kr requirement

• Modular, parallelized DAQ system ready
for XENONnT

Upgrades required for XENONnT

+ Larger cryostat inner vessel
+ New TPC

+ Additional ~200 PMTs, with lower 
radioactivity already ordered

+ Additional minor DAQ electronics
+ LXe (~ 8t in our hands)
+ New Storage System

+ Rn material selection (screening, 
treatment) and new Rn distillation 
column

Target mass of 6 tons,
sensitivity to spin-independent 
WIMP-nucleon elastic scattering cross 
sections of 1.6 × 10-48 cm2

Current schedule:
start XENONnT in early 2019



Upgrade: XENONnT
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• Quick upgrade of TPC and inner cryostat 

• All major systems remain unchanged

• Construct TPC in parallel to XENON1T operation

• Upgrade starting 2018



Conclusion
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• XENON1T first results demonstrate that the detector is performing
very well

• The measured background is the lowest ever achieved in a DM
detector: (1.93 ± 0.25) 10-4 events /(kg day keV)

• With only 34.2 days of exposure we have already obtained the best
exclusion limit in the world: 7.7 x 10--47 cm2 @ 35 GeV/c2

• Up to now, > 80 days addiIonal days of science run have been
acquired (and detector sIll running) and are currently under analysis

• The foreseen sensiIvity of XENON1T in 2 t y is 1.6 x 10--47 cm2

• Planning a fast upgrade to XENONnT for another order of magnitude
in sensiIvity
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Background	in	XENON1T
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Electron recoils (ER):
• Low energy Compton scatters from the 

radioactive contaminants in the detector 
components: U and Th chains, 40K, 60Co, 
137Cs.

• Intrinsic contaminants: β decays of 222Rn 
daughters, 85Kr, 136Xe.

• Elastic scattering of solar neutrinos off 
electrons.

Nuclear Recoils (NR):
• Radiogenic neutrons: spontaneous 

fission and (alpha, n) reaction from the U 
and Th chains in the detector 
components.

• Muon-induced neutrons (Cosmogenic)
• Coherent scattering of neutrinos off the 

Xe nuclei (CNNS).

1000 kg fiducial target

Muon veto design and performance:
XENON1T, JINST 9, P11006 (2014)

material screening,
EPJ C 75, 546 (2015)

JCAP04(2016)027



Earthquake of 18th January 2017
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• Magnitude 5.5 earthquake ~20 km away detected

• Detector still operating and taking data



XENON1T:	Expected	sensitivity
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ER rejection 99.5% @ 50% NR acceptance
→ measured LY is ~2x higher than in XENON100!

assumptions: S1 interval: 3 – 70 PE

JCAP04(2016)027

based on background predictions 
2 t×y exposure



Future:	LZ	&	XENONnT
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LZ = LUX + ZEPLIN
• Same	location	than	LUX
• Turning	on	by	2020	with	

1	000	initial	live-days	
• 10	tons	total,	7	tons	active,	

XENONnT:
• Quick	upgrade	of	TPC and	inner	

cryostat
• All	major	systems	remain	unchanged	
• Construct	TPC	in	parallel	to	

XENON1T	operation	
• Upgrade	starting	2018
• 8	tons	total,	6	tons	active


