Simultaneous Search for Extra Light and Heavy Higgs Bosons via Cascade Decays

Ulrich Ellwanger Université Paris-Saclay, Orsay, France with Matías R.-Vázquez

Motivation:

Higgs-to-Higgs decays the NMSSM:

Scale invariant Superpotential: $W = \lambda \hat{H}_u \hat{H}_d \hat{H}_S + \frac{\kappa}{3} \hat{H}_S^3 + \dots$

- Two SU(2) doublets H_u (couples to up-type quarks) and H_d (couples to down-type quarks and leptons) \rightarrow like in the MSSM,
- A singlet H_S whose vev generates a Dirac mass term for higgsinos (replaces the μ term of the MSSM)

Origin of trilinear Higgs couplings:

Mostly quartic (scale invariant) couplings $\sim (\lambda^2, \ \lambda \kappa, \ \kappa^2, \ g^2) \times H^4$, replace one H by $\langle H \rangle$

Exception: trilinear soft SUSY breaking term $\lambda A_{\lambda}H_{u}H_{d}H_{S}$ with λA_{λ} a few 100 GeV ... O(TeV)

From H_u , H_d , H_S to mass eigenstates in two steps:

1) Rotate H_u , H_d by β with $\tan \beta = \frac{\langle H_u \rangle}{\langle H_d \rangle}$ into H'_{125} , H'_{MSSM} with $\langle H'_{125} \rangle = \langle H_{SM} \rangle$, $\langle H'_{MSSM} \rangle = 0$ ("Higgs basis")

 \rightarrow H'_{125} is essentially SM-like, up to mixing with H_S \rightarrow H'_{MSSM} is essentially MSSM-like

A similar rotation in the CP-odd sector diagonalises the doublet sector \rightarrow Goldstone boson + A'_{MSSM} which is essentially MSSM-like

Now: trilinear coupling of CP-even scalars:

$$\frac{1}{\sqrt{2}}\lambda A_{\lambda}\left(\frac{\tan^{2}\beta-1}{\tan^{2}\beta+1}H_{125}'(H_{MSSM}'H_{S}+A_{MSSM}'A_{S})+\ldots\right)$$

2) H'_{125} , H'_{MSSM} , A'_{MSSM} , H_S/A_S are nearly mass eigenstates in most of the parameter space, the remaining mixing angles are typically small \rightarrow omit the primes in the following

 H_{MSSM} , A_{MSSM} are nearly degenerate with a charged Higgs H^{\pm} with $M_{H^{\pm}} \gtrsim 350$ GeV to avoid too large contributions to the $BR(b \rightarrow s + \gamma)$

The masses of the mostly singlet-like scalars H_S/A_S depend on unknown parameters and can vary from 0 GeV...O(TeV); not degenerate!

 $M_{H_S} \sim 60 - 110$ GeV is natural, helps to explain $M_{H_{SM}} \sim 125$ GeV without inducing a too large $BR(H_{SM} \rightarrow H_S H_S)$ which could reduce the SM-like branching fractions like $H_{SM} \rightarrow Z^*Z$ below its measured values

How to detect H_S/A_S ?

Their couplings to SM particles originate from mixing, but mixing between H_S and H_{SM} reduces the couplings of " H_{SM} " to ZZ, WW below their SM values (corresponding to $\kappa = 1$):

Run I ATLAS and CMS combination:

From $\kappa^2_{H_{SM}ZZ}\gtrsim 0.7$ (at 2σ) and $\kappa^2_{H_{SM}ZZ}+\kappa^2_{H_SZZ}\lesssim 1$

 \rightarrow The (relative) $H_S - ZZ/WW$ couplings squared can be at most \sim 0.3; valid for all H_S couplings (unless H_S mixes with H_{MSSM})

LEP search for a light scalar with reduced coupling ξ^2 to ZZ (recall: $\xi^2 \lesssim 0.3$ from $H_{SM}ZZ$ coupling):

The region in the $\xi^2 - m_H$ plane below the black line and below 0.3 is allowed

ATLAS/CMS searches for $ggF \rightarrow H_S \rightarrow \gamma\gamma$ at 8 TeV:

Extra Higgs Bosons

Do the ATLAS/CMS searches touch possible values for $\sigma(ggF \rightarrow H_S \rightarrow \gamma\gamma)$ within the LEP-allowed NMSSM parameter space? (M. Rodríguez, U.E.):

YES, but far from exclusion... even light H_S states may have too small direct production cross sections for discovery, even at 13 TeV

Run I searches for $H_{125} \rightarrow A_S A_S (H_S H_S) \rightarrow 4$ leptons (From R. Aggleton et al., JHEP 1702 (2017) 035, arXiv:1609.06089)

Light green/blue points: viable in the NMSSM after LEP/LHC constraints

 \rightarrow These searches for H_S/A_S have only scratched the NMSSM parameter space ...

Ulrich Ellwanger

Extra Higgs Bosons

8 / 14

... and are limited to $M_{H_S,A_S} \lesssim 60$ GeV; how to search for heavier H_S/A_S ?

→ Recall: the couplings $H_{MSSM}H_SH_{125}$, $A_{MSSM}A_SH_{125}$ can be large (in contrast to $H_{MSSM}H_{125}H_{125}$, $H_{MSSM}H_SH_S$, ...)

→ The $BRs(H_{MSSM}/A_{MSSM} \rightarrow H_{125}H_S/A_S)$ can be large $\sim 50\%$, (competing only with $H/A_{MSSM} \rightarrow t\bar{t}$, reducing the BR for the search into $\tau\tau$!)

 $ggF \rightarrow H_{MSSM} \rightarrow H_S H_{125}$ and $ggF \rightarrow A_{MSSM} \rightarrow A_S H_{125}$ look like resonant Higgs pair production, but with one SM Higgs replaced by H_S/A_S with unknown mass

- \rightarrow Look for $b\bar{b}b\bar{b}$ (4 *b*-tagged jets) with
 - one $b\bar{b}$ pair: $M_{b\bar{b}} \sim 125$ GeV,
 - another $b\bar{b}$ pair: $M_{b\bar{b}} \sim M_{H_s,A_s}$ (unknown),
 - $M_{b\bar{b}b\bar{b}} \sim M_{H/A_{MSSM}}$ (unknown)

 $(b\bar{b}\tau\tau$ final states are slightly less promising; $b\bar{b}\gamma\gamma$ final states possibly promising for $M_{H/A} \lesssim 500$ GeV)

Best Strategy (M. Rodríguez)

(Borrowed from ATLAS/CMS searches for resonant SM Higgs pair production)

Use a "test" mass M_{H_s} ; for given M_{H_s} (or M_{A_s}):

- Optimize the cuts on p_T ,
- Optimise the pairing of 4 *b*-tagged jets into 2×2 *b*-tagged jets: cut on *bb* masses arond 115 GeV and $M_{H_S} - 10$ GeV (allow for "losses" outside the R = 0.4 – jets)
- Study the distribution of M_{4b} from the 4 *b*-tagged jets (after correcting both $M_{b\bar{b}}$ to 125 GeV/ M_{H_S})
- Only if M_{H_S} was chosen correctly, one observes a "bump" in $M_{b\bar{b}b\bar{b}}$ near $M_{H_{MSSM}}$ whose significance can be computed as function of M_{H_S} , $M_{H_{MSSM}}$ and notably the $\sigma(ggF \rightarrow H_{MSSM} \rightarrow H_{125} + H_S \rightarrow b\bar{b}b\bar{b})$
- $\bullet\,$ Expected 95% CL exclusion limits and 5 σ discovery limits can be obtained
- ullet These are model independent (assuming just a width $~\lesssim~$ a few GeV)

The dominant QCD backgrounds are multijets $b\bar{b}b\bar{b}$, $b\bar{b}c\bar{c}$ (with mistagging), and a few % $t\bar{t}$. Simulations are insufficient; the absolute scale should be obtained from sidebands as done by ATLAS/CMS:

Search for Higgs pair production in ATL-CONF-2016-049, CMS-PAS-HIG-16-002:

- Simulate multijets $(+ t\bar{t})$
- Compare to data in sidebands (2 b-tags only)
- Rescale the simulated M_{4b} distribution into the signal region (4 b-tags)
- Compare to data

Here: Take $M_{H_S} \sim 125$ GeV, simulate multijets $(+ t\bar{t})$, apply ATLAS cuts, compare our simulated M_{4b} distribution to ATLAS data used as "sideband" \rightarrow Rescale the simulated M_{4b} distribution from multijets by a factor 1.55 \pm 0.27 (beyond a NLO K-factor 1.7): Approximately M_{4b} independent!

L.h.s.: M_{4b} distribution from MC vs. ATL-CONF-2016-049. R.h.s.: M_{4b} distribution from MC vs. ATL-CONF-2016-049 after rescaling

Subsequently: Rescale M_{4b} distributions from MC by 1.55 ± 0.27 for all M_{H_S}

Expected sensitivities to $\sigma(ggF \rightarrow H \rightarrow H_{SM} + H_S \rightarrow b\bar{b}b\bar{b})$ as function of M_{H_S} :

Upper left: $M_{H_{MSSM}} = 425$ GeV, 95% limits and 5 σ discovery for $L = 300 fb^{-1}$ Upper right: $M_{H_{MSSM}} = 750$ GeV, 95% limits and 5 σ discovery for $L = 300 fb^{-1}$ Lower left: $M_{H_{MSSM}} = 425$ GeV, 95% limits and 5 σ discovery for $L = 3000 fb^{-1}$ Lower right: $M_{H_{MSSM}} = 750$ GeV, 95% limits and 5 σ discovery for $L = 3000 fb^{-1}$ Blue: NMSSM points

Conclusions

- The NMSSM contains a rich BSM Higgs sector which is hardly tested
- Mostly singlet-like scalars H_S (or A_S) are difficult to detect:
- If lighter than 60 GeV possibly via H_{125} decays; many ongoing ATLAS/CMS studies on exotic Higgs decays, indirect constraints from SM-like signal rates of H_{125} notably $H_{125} \rightarrow Z^*Z$
- Direct production $H_S/A_S \rightarrow \gamma \gamma$ cross sections may be large enough only if H_S/A_S happen to mix strongly with H_{125} , H_{MSSM}/A_{MSSM}
- Present result: Searches for H_{MSSM}/A_{MSSM} → H₁₂₅ + H₅/A₅ can be sensitive to very singlet-like H₅/A₅! Excesses would descover simultaneously H_{MSSM}/A_{MSSM} and H₅/A₅!

(Such decays would also reduce the branching ratio of H_{MSSM}/A_{MSSM} into the usually employed $\tau\tau$ channel \rightarrow alleviated limits!)