

ipnl

Institut des Origines de Lyon

Light ALPs from Partial Compositeness

G.Cacciapaglia

IRN Terascale 2017 - Montpellier

What is our job?

Models can be ruled out, but cannot be proven right!

Even "disliked" possibilities need to be tested and ruled out!

What is our job?

The nature of the 125 GeV Higgs is not yet fully established!

We have a pretty good idea of the mechanism

But, we don't know how to protect it.

The possibility that it may be composite needs to be fully explored!

The hot potato: flavour!

The hot potato: flavour!

The hot potato: flavour!

The partial compositeness paradigm

Kaplan Nucl. Phys. B365 (1991) 259

$$\frac{1}{\Lambda_{\rm fl.}^{d_H-1}} \mathcal{O}_H q_L^c q_R \qquad \Delta m_H^2 \sim \left(\frac{4\pi f}{\Lambda_{\rm fl.}}\right)^{d_{HH}-4} (4\pi f)^2 \quad \text{Both irrelevant if}$$

we assume: $d_H > 1$ $d_{HH} > 4$

Let's postulate the existence of fermionic operators:

$$\begin{array}{cccc} \displaystyle \frac{1}{\Lambda_{\mathrm{fl.}}^{d_F-5/2}} (\tilde{y}_L \; q_L \mathcal{F}_L + \tilde{y}_R \; q_R \mathcal{F}_R) & & \text{This dimension} \\ & & \text{is not related} \\ & & \text{to the Higgs!} \end{array}$$

Caveat: it's a wishful thinking scenario!

Is it there an underlying theory that can actually do it?

New information may come from the UV!

Towards a UV theory

SM: EW colour + hypercharge

global : $\langle \psi \psi \rangle \neq 0$ a) $\langle \chi \chi \rangle \neq 0$ Image: product of the second symplectic coloured symplectic coloured symplectic coloured product of the second symplectic coloured symplectic colo

unlikely ('t Hooft anomaly matching)

Exception: 1506.00623

Predicting di-boson resonances

More precisely, the global symmetries are: $SU(N_\psi) imes SU(N_\chi) imes U(1)_\psi imes U(1)_\chi$

WZW term:

 $\mathcal{L} \supset rac{g_i^2}{32\pi^2} rac{\kappa_i}{f_a} \; a \; \epsilon^{\mu
ulphaeta} G^i_{\mu
u} G^i_{lphaeta} \, ,$

Coefficients depend on the underlying dynamics!

G = A, W, Z, g !!!

Cai, Flacke, Lespinasse 1512.04508

Anomalous U(1) -> heavy η'

Orthogonal U(1) -> pNGB a

Decays and production only via WZW anomaly.

Predicting di-boson resonances

Couplings to tops are inevitable!

$$ic_5 \frac{m_{\rm top}}{\sqrt{q_\psi^2 f_{a_\psi}^2 + q_\chi^2 f_{a_\chi}^2}} \left(\left(n_\psi q_\psi + n_\chi q_\chi \right) \,\tilde{a} + \left(n_\chi q_\psi \frac{f_{a_\psi}}{f_{a_\chi}} - n_\psi q_\chi \frac{f_{a_\chi}}{f_{a_\psi}} \right) \tilde{\eta}' \right) \bar{t} \gamma^5 t \,,$$

Model zoology

$G_{ m HC}$	ψ	x	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Name	
	Real	Real	$SU(5)/SO(5) \times SU(6)/SO(6)$					
$SO(N_{\rm HC})$	$5 \times \mathbf{S}_2$	$6 \times \mathbf{F}$	$N_{\rm HC} \geq 55$	$\frac{5(N_{\rm HC}+2)}{6}$	1/3	/		
$SO(N_{\rm HC})$	$5 \times \mathbf{Ad}$	$6 \times \mathbf{F}$	$N_{\rm HC} \ge 15$	$\frac{5(N_{\rm HC}-2)}{6}$	1/3	/		
$SO(N_{\rm HC})$	$5 imes \mathbf{F}$	$6 imes \mathbf{Spin}$	$N_{ m HC}=7,9$	$\frac{5}{6}, \frac{5}{12}$	1/3	$N_{ m HC}=7,9$	M1, M2	
$SO(N_{\rm HC})$	$5 imes \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{ m HC}=7,9$	$\frac{5}{6}, \frac{5}{3}$	2/3	$N_{ m HC}=7,9$	M3, M4	
	Real	Pseudo-Real	SU(5)/SO(5)) × SU(6)	/Sp(6)			
$Sp(2N_{\rm HC})$	$5 imes \mathbf{Ad}$	$6 imes \mathbf{F}$	$2N_{\rm HC} \geq 12$	$\frac{5(N_{\rm HC}+1)}{3}$	1/3	/		
$Sp(2N_{\rm HC})$	$5 imes \mathbf{A}_2$	$6 imes \mathbf{F}$	$2N_{\rm HC} \geq 4$	$\frac{5(N_{\rm HC}-1)}{3}$	1/3	$2N_{ m HC}=4$	M5	
$SO(N_{\rm HC})$	$5 imes \mathbf{F}$	$6 imes \mathbf{Spin}$	$N_{ m HC}=11,13$	$\frac{5}{24}$, $\frac{5}{48}$	1/3	/		
Real Complex $SU(5)/SO(5) \times SU(3)^2/SU(3)$								
$SU(N_{\rm HC})$	$5 imes \mathbf{A}_2$	$3 imes ({f F}, \overline{f F})$	$N_{ m HC}=4$	<u>5</u> 3	1/3	$N_{ m HC} = 4$	M6	
$SO(N_{\rm HC})$	$5 imes \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$N_{ m HC}=10,14$	$\frac{5}{12}$, $\frac{5}{48}$	1/3	$N_{ m HC} = 10$	M7	
	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)/	/SO(6)			
$Sp(2N_{ m HC})$	$4 imes \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{\rm HC} \leq 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{ m HC}=4$	M8	
$SO(N_{\rm HC})$	$4 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{ m HC}=11,13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{ m HC} = 11$	M9	
Complex Real $SU(4)^2/SU(4) \times SU(6)/SO(6)$								
$SO(N_{\rm HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 imes \mathbf{F}$	$N_{ m HC}=10$	<u>8</u> 3	2/3	$N_{\rm HC}=10$	M10	
$SU(N_{\rm HC})$	$4\times ({\bf F},\overline{{\bf F}})$	$6 imes \mathbf{A}_2$	$N_{ m HC}=4$	$\frac{2}{3}$	2/3	$N_{ m HC} = 4$	M11	
Complex Complex $SU(4)^2/SU(4) \times SU(3)^2/SU(3)$								
$SU(N_{\rm HC})$	$4\times ({\bf F},\overline{{\bf F}})$	$3 imes (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$N_{\rm HC} \geq 5$	$\frac{4}{3(N_{\rm HC}-2)}$	2/3	$N_{\rm HC}=5$	M12	
$SU(N_{\rm HC})$	$4\times ({\bf F},\overline{{\bf F}})$	$3 imes (\mathbf{S}_2, \overline{\mathbf{S}}_2)$	$N_{\rm HC} \geq 5$	$\frac{4}{3(N_{\rm HC}+2)}$	2/3	/		
$SU(N_{\rm HC})$	$4\times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$3 imes ({f F}, \overline{{f F}})$	$N_{ m HC}=5$	4	2/3	/		

Ferretti 1604.06467

Model zoology

$G_{ m HC}$	ψ	x	Restrictions	$-q_\chi/q_\psi$	Y_{χ}	Non Conformal	Model Name
	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)/	/SO(6)		
$Sp(2N_{ m HC})$	$4 imes \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{ m HC} \le 36$	$\frac{1}{3(N_{ m HC}-1)}$	2/3	$2N_{ m HC} = 4$	M8
$SO(N_{ m HC})$	$4 imes {f Spin}$	$6 imes {f F}$	$N_{ m HC}=11,13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9
				and the second se			
					/		
		Defines t	${ m an}\zeta$		r	Theory co	onfines!
				$Q = \psi \psi$	u		

All couplings can be predicted!

Model-dependent results

	Pseudo-Real	Real	$SU(4)/Sp(4) \times SU(6)/SO(6)$				
$Sp(2N_{ m HC})$	$4 imes {f F}$	$6 imes \mathbf{A}_2$	$2N_{ m HC} \leq 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{ m HC}=4$	M8
$SO(N_{ m HC})$	$4 imes {f Spin}$	$6 imes {f F}$	$N_{ m HC}=11,13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{ m HC} = 11$	M9

<u>The EFT is the same!</u> Numerical value of couplings:

Model		κ_g	$\frac{\kappa_W}{\kappa_g}$	$rac{\kappa_B}{\kappa_g}$	$rac{C_t}{\kappa_g}$ (2,0)	$rac{C_t}{\kappa_g}$ (0,2)	$ an\zeta$
M8	a	-0.77(-0.39)	-1.2(-2.5)	1.5(0.17)	-1.2(-2.5)	0.40(0.40)	
	η'	1.9(2.0)	0.20(0.096)	2.9(2.8)	0.20(0.0.96)	0.40(0.40)	-0.41
	π_8	7.1	0	1.3	0	0.40	
M9	a	-4.3(-2.7)	-0.55(-2.4)	2.1(0.26)	-0.068(-0.30)	0.18(0.18)	
	η'	1.3(3.6)	5.8(1.3)	8.5(4.0)	0.73(0.16)	0.18(0.18)	-3.26
	π_8	16.	0	1.3	0	0.18	

Assuming $f_a = f_{\psi} = f_{\chi}$

Model M8

Belyaev, G.C., Cai, Ferretti, Flacke, Parolini, Serodio 1610.06591

"a" too light for the LHC!

$$\left. \frac{m_a}{n_{\eta'}} \right|_{\max} = 0.20$$

1

For light masses: bounds competitive with EW precision! Larger top couplings: reduced di-boson rates due to tt BR. Model M9

Above red line, bound driven by "a"!

Bounds stronger than EW precision in most of the parameter space!

How light can "a" be?

Work in progress with T.Flacke, G.Ferretti & H.Serôdio

$$-\mathcal{L}_{\text{mass}} = \frac{1}{2}m_{a_{\chi}}^{2}a_{\chi}^{2} + \frac{1}{2}m_{a_{\psi}}^{2}a_{\psi}^{2} + \frac{1}{2}M_{A}^{2}(\cos\zeta a_{\chi} - \sin\zeta a_{\psi})^{2}$$

Mass driven by fermion masses: it may be as light as massless!

Di-photon very suppressed! Main decay into b's & jets. Taus?

How light can "a" be?

Mass range with no bounds!

How Light can "a" be?

Work in progress with T.Flacke, G.Ferretti & H.Serôdio

How can the mass range few to 100 GeV tested at the LHC?

Can the di-tau searches extend below the Z pole?