On the coverage of the pMSSM by simplified-model results

Sabine Kraml

(LPSC Grenoble)

work in progress together with Federico Ambrogi, Suchita Kulkarni, Ursula Laa, Andre Lessa, Wolfgang Waltenberger

IRN Terascale@Montpellier, 3-5 July 2017

Simplified Model Spectra (SMS) results

- It has become standard that ATLAS and CMS present the results of their searches in terms of `simplified models' contraints.
- SMS reduce full models with dozens of particles and a plethora of parameters to subsets with just 2-3 new states and a simple decay pattern.

Example: gluino-neutralino simplified model with BR($\tilde{g} \rightarrow bb \tilde{\chi}_1^0$) = 100%: 4b+MET final state

- Very convenient for optimising analyses that look for a particular final state, as well as for comparing the reach of different strategies.
- Understanding how SMS results constrain a realistic model with a multitude of relevant production channels and decay modes is, however, a non-trivial task.

Interesting to compare reach of different analyses, but what if the stop has (a mix of) different decay modes?

Dependence on decay mode very pronounced for EW-inos. Moreover, mass limits assume pure Wino production Xsections !

Simplified Model Spectra (SMS) results

- It has become standard that ATLAS and CMS present the results of their searches in terms of `simplified models' contraints.
- SMS reduce full models with dozens of particles and a plethora of parameters to subsets with just 2-3 new states and a simple decay pattern.

Example: gluino-neutralino simplified model with BR($\tilde{g} \rightarrow bb \tilde{\chi}_1^0$) = 100%: 4b+MET final state

- Very convenient for optimising analyses that look for a particular final state, as well as for comparing the reach of different strategies.
- Understanding how SMS results constrain a realistic model with a multitude of relevant production channels and decay modes is, however, a non-trivial task.

→ automated tools

http://smodels.hephy.at

Decompose signatures of full model into SMS elements Compare with experimental constraints in SModelS database

SModelS v1.1.1 now available, user manual: arXiv:1701.06586

Experimental constraints

Upper Limit maps give the 95% CL upper limit on cross section x branching ratio for a specific SMS.

The UL values can be based on the best SR (for each point in parameter space), a combination of SRs or more involved limits from other methods.

Limit on $\sigma \times BR$

Efficiency maps correspond to a grid of simulated acceptance x efficiency values for a specific signal region for a specific simplified model.

Together with the observed and expected #events in each SR, this allows to compute a likelihood.

Limit on $\Sigma \epsilon \times \sigma \times BR$

NB: the 95%CL exclusion curve is not used, cannot be re-interpreted

SMS assumptions in SModelS

- BSM particles are described only by their masses, production cross sections and branching ratios.
- Underlying assumption is that differences in the event kinematics from, e.g., different production mechanisms or the spins of the BSM particles, do not significantly affect the signal selection efficiencies.
- Can be used for testing any BSM scenario with a Z2-like symmetry as long as all heavier odd particles decay promptly to the lightest one.
- Successfully applied to minimal and non-minimal SUSY (NMSSM, UMSSM, sneutrino LSP), as well as extra quark, UED models ...

SK et al, 1312.4175; Belanger et al, 1308.3735; Barducci et al., 1510.00246; Arina et al., 1503.02960; Edelhauser et al., 15 01.03942; SK et al,1607.02050.

• How well a full model is actually covered by SMS constraints is, however, still an open question.

Information used to classify topologies

Notes

- The simplest SMS have just 2 free parameters, mother and `LSP' mass.
- For more complicated topologies, the results can only be used if an interpolation in all free parameters is possible.
- E.g. if the decay chain proceeds via an intermediate chargino, we need maps (=mass planes) for several different chargino masses.
- If only one plane is given for an SMS with >2 parameters, the result cannot be generalised.

Notes

- The simplest SMS have just 2 free parameters, mother and `LSP' mass.
- For more complicated topologies, the results can only be used if an interpolation in all free parameters is possible.
- E.g. if the decay chain proceeds via an intermediate chargino, we need maps (=mass planes) for several different chargino masses.
- If only one plane is given for an SMS with >2 parameters, the result cannot be generalised.
- Sometimes ATLAS/CMS publish "simplified model" constraints on long decay chains but with all intermediate masses fixed → cannot use these
- Likewise, we cannot use results for mixed decays with fixed BRs (mix of different topologies)

So how do simplified model results constrain realistic models?

ATLAS pMSSM study

In 1508.06608, ATLAS interpreted the results from 22 separate ATLAS searches in the context of the 19-parameter phenomenological MSSM (pMSSM) [vast scan]

ATLAS pMSSM study

In 1508.06608, ATLAS interpreted the results from 22 separate ATLAS searches in the context of the 19-parameter phenomenological MSSM (pMSSM) [vast scan]

Analyses considered (ATLAS)

U	sed by ATLAS	available in SModelS v1.1.1	
	Analysis	ID	SModelS database
	0-lepton + 2–6 jets + E_T^{miss}	SUSY-2013-02*	6 UL, 2 EM
	0-lepton + 7–10 jets + E_T^{miss}	SUSY-2013-04*	1 UL, 10 EM [‡]
ive	1-lepton + jets + E_T^{miss}	SUSY-2013-20*	1 UL from CONF-2013-089
lus	$\tau(\tau/\ell) + \text{jets} + E_T^{\text{miss}}$	SUSY-2013-10	
nc	$SS/3$ -leptons + jets + E_T^{miss}	SUSY-2013-09	1 UL (+5 UL, CONF-2013-007)
	$0/1$ -lepton + $3b$ -jets + E_T^{miss}	SUSY-2013-18*	2 UL, 2 EM
	Monojet	_	 (but monojet stop, see below)
я	0-lepton stop	SUSY-2013-16*	1 UL, 1 EM
tio	1-lepton stop	SUSY-2013-15*	1 UL, 1 EM
era	2-leptons stop	SUSY-2013-19*	2 UL
Gen	Monojet stop	SUSY-2013-21	4 EM
ф В	Stop with Z boson	SUSY-2013-08	1 UL
hir	$2b$ -jets + $E_T^{ m miss}$	SUSY-2013-05*	3 UL, 1 EM [‡]
Η	$tb+E_T^{\text{miss}}$, stop	SUSY-2014-07	_
	lh	SUSY-2013-23*	1 UL
ak	2-leptons	SUSY-2013-11	4 UL, 4 EM [‡]
MO	$2-\tau$	SUSY-2013-14	
ctr	3-leptons	SUSY-2013-12	5 UL
Ð	4-leptons	SUSY-2013-13	
_	Disappearing Track	SUSY-2013-01	n.a. in current framework
ler	Long-lived particle		n.a. in current framework
GEI	$H/A \rightarrow \tau^+ \tau^-$	—	n.a. in current framework

* plus Fastlim EMs for preliminary version (conf note) of the analysis.

[‡] incl. 'home-grown' EMs produced with MadAnalysis5 or CheckMATE recasting.

Analyses considered (ATLAS)

U	sed by ATLAS	a	vailable in SModelS v1.1.1	
	Analysis	ID	SModelS database	
	0-lepton + 2–6 jets + E_T^{miss}	SUSY-2013-02*	6 UL, 2 EM	
	0-lepton + 7–10 jets + E_T^{miss}	SUSY-2013-04*	1 UL, 10 EM [‡]	several EM produced by us with
ive	1 -lepton + jets + E_T^{miss}	SUSY-2013-20*	1 UL from CONF-2013-089	MadAnalysis5/CheckMATE
lus	$ au(au/\ell) + ext{jets} + E_T^{ ext{miss}}$	SUSY-2013-10	—	
Inc	$SS/3$ -leptons + jets + E_T^{miss}	SUSY-2013-09	1 UL (+5 UL, CONF-2013-007)	
	$0/1$ -lepton + $3b$ -jets + E_T^{miss}	SUSY-2013-18*	2 UL, 2 EM	A Deale was the second life allows also be
	Monojet	_	 (but monojet stop, see below) 	Dark matter simplified model
ц	0-lepton stop	SUSY-2013-16*	1 UL, 1 EM	* results are very model dependent
tio	1-lepton stop	SUSY-2013-15*	1 UL, 1 EM	overlapping with multi-iet one)
era	2-leptons stop	SUSY-2013-19*	2 UL	
gen	Monojet stop	SUSY-2013-21	4 EM	
p	Stop with Z boson	SUSY-2013-08	1 UL	
'n	$2b$ -jets + E_T^{miss}	SUSY-2013-05*	$3 \text{ UL}, 1 \text{ EM}^{\ddagger}$	
	$tb+E_T^{\text{miss}}$, stop	SUSY-2014-07		
4	ℓh	SUSY-2013-23*	1 UL	no SMS interpretation
eak	2-leptons	SUSY-2013-11	4 UL, 4 EM [‡]	available in exp. publication
MO	$2-\tau$	SUSY-2013-14		available in exp. publication
ctr	3-leptons	SUSY-2013-12	5 UL	
Ele	4-leptons	SUSY-2013-13	—	
	Disappearing Track	SUSY-2013-01	n.a. in current framework	Current SModelS framework
her	Long-lived particle	_	n.a. in current framework	
ő	$H/A \rightarrow \tau^+ \tau^-$	_	n.a. in current framework	J requires will i signature

* plus Fastlim EMs for preliminary version (conf note) of the analysis.

[‡] incl. 'home-grown' EMs produced with MadAnalysis5 or CheckMATE recasting.

Analyses considered (ATLAS)

U	sed by ATLAS	a	vailable in SModelS v1.1.1	
	Analysis	ID	SModelS database	
	0-lepton + 2–6 jets + E_T^{miss}	SUSY-2013-02*	6 UL, 2 EM	
	0-lepton + 7–10 jets + E_T^{miss}	SUSY-2013-04*	1 UL, 10 EM [‡]	several EM produced by us with
ive	1 -lepton + jets + E_T^{miss}	SUSY-2013-20*	1 UL from CONF-2013-089	MadAnalysis5/CheckMATE
lus	$ au(au/\ell) + ext{jets} + E_T^{ ext{miss}}$	SUSY-2013-10	—	
Inc	$SS/3$ -leptons + jets + E_T^{miss}	SUSY-2013-09	1 UL (+5 UL, CONF-2013-007)	
	$0/1$ -lepton + $3b$ -jets + E_T^{miss}	SUSY-2013-18*	2 UL, 2 EM	O De als ses ettes a las sellificadas e als l
	Monojet		 (but monojet stop, see below) 	Dark matter simplified model
ц	0-lepton stop	SUSY-2013-16*	1 UL, 1 EM	* results are very model dependent
eratio	1-lepton stop	SUSY-2013-15*	1 UL, 1 EM	overlapping with multi-jet one)
	2-leptons stop	SUSY-2013-19*	2 UL	
gen	Monojet stop	SUSY-2013-21	4 EM	
Ę	Stop with Z boson	SUSY-2013-08	1 UL	
id	$2b$ -jets + E_T^{miss}	SUSY-2013-05*	$3 \text{ UL}, 1 \text{ EM}^{\ddagger}$	
. н	$tb+E_T^{\text{miss}}$, stop	SUSY-2014-07		
4	ℓh	SUSY-2013-23*	1 UL	no SMS interpretation
eal	2-leptons	SUSY-2013-11	4 UL, 4 EM [‡]	available in exp. publication
MO	$2-\tau$	SUSY-2013-14		available in exp. publication
ctr	3-leptons	SUSY-2013-12	5 UL	
Ē	4-leptons	SUSY-2013-13	—	
	Disappearing Track	SUSY-2013-01	n.a. in current framework	Current SModelS framework
her	Long-lived particle	—	n.a. in current framework	
ð	$H/A \rightarrow \tau^+ \tau^-$	—	n.a. in current framework	J requires wich signature

* plus Fastlim EMs for preliminary version (conf note) of the analysis.

[‡] incl. Come-grown' EMs produced with MadAnalysis5 or CheckMATE recasting.

Fastlim-1.0 [arXiv:1402.0492] efficiency maps converted to SModelS format; target "natural SUSY" scenarios

Analyses considered (CMS)

CMS 8 TeV

available in SModelS v1.1.1

[‡] incl. 'home-grown' EMs produced with MadAnalysis5 or CheckMATE recasting.

Very similar to ATLAS analyses, comparable reach, but (in part) complementary SMS topologies in SModelS database

	bino-like LSP	higgsino-like LSP
tested by ATLAS	103,410	126,684
excluded by ATLAS	41,570 (40.2%)	48,266 (38.1%)
of these, tested in SModelS*	38,575	45,594
excluded by SModelS	21,151 (55%)	28,669 (63%)

	bino-like LSP	higgsino-like LSP
tested by ATLAS	103,410	126,684
excluded by ATLAS	41,570 (40.2%)	48,266 (38.1%)
of these, tested in SModelS*	38,575	45,594
excluded by SModelS	21,151 (55%)	28,669 (63%)

	bino-like LSP	higgsino-like LSP
tested by ATLAS	103,410	126,684
excluded by ATLAS	41,570 (40.2%)	48,266 (38.1%)
of these, tested in SModelS*	38,575	45,594
excluded by SModelS	21,151 (55%)	28,669 (63%)

	bino-like LSP	higgsino-like LSP
tested by ATLAS	103,410	126,684
excluded by ATLAS	41,570 (40.2%)	48,266 (38.1%)
of these, tested in SModelS*	38,575	45,594
excluded by SModelS	21,151 (55%)	28,669 (63%)

Coverage in terms of gluino mass

Fraction of excluded points w.r.t. ATLAS (after filtering)

	bino LSP	higgsino LSP
m(gluino) < 600 GeV	80 %	97 %
m(gluino) < 1400 GeV	60 %	74 %

Gluino vs. neutralino mass plane

Bino-like LSP

Fraction of Bino LSP ATLAS excluded points excluded by SModelS

Higgsino-like LSP

Fraction of Higgsino LSP ATLAS excluded points excluded by SModelS

- Coverage drops for intermediate gluino masses, where a larger variety of decay channels becomes available; more pronounced for bino than for higgsino LSP.
- Coverage also drops in compressed region and for heavy LSP.

Why are SMS results missing light gluinos?

 Most SMS results assume pair production followed by the same simple cascade decay on either branch.

• Fastlim efficiency maps contain also some asymmetric topologies, e.g.

assumes decay products of chargino decay are too soft too be visible (very small mass difference of chargino-neutralino; typical higgsino-LSP case)

• In general much more variety possible, including mixed decays via heavy neutralinos, longer cascades, asymmetric branches from associated production, etc.

NB some ATLAS/CMS results available for long cascades, but not applicable in general because only one mass plane with fixed intermediate masses.

Asymmetric or long cascade decays?

Points excluded by ATLAS but not by SModelS: how much of the cross section goes into asymmetric branches or long cascade decays for which we have no SMS results?

Asymmetric topologies: short decays (max. one intermediate particle) but different final states from the two branches Long cascade decays: more than one intermediate SUSY particle in the decay chain (4 or more mass parameters).

Plots are for bino-like LSP case, but look similar for higgsino-like LSP.

Most important missing topologies

i.e. topologies for which no SMS results are available

Most important missing topologies

i.e. topologies for which no SMS results are available

Gluino-squark associated production

particularly important missing topology when one squark is lighter than the others

Gluino-squark associated production

particularly important missing topology when one squark is lighter than the others

Gluino-squark simplified model in ATLAS

assumes 8 degenerate squarks

ATLAS-SUSY-2014-06 arXiv:1507.05525

Coverage of 3rd generation

note small number of points in each bin

missing: SMS for decays via heavier EW-inos with visible decays to LSP

Coverage of 3rd generation

note small number of points in each bin

missing: SMS for decays via heavier EW-inos with visible decays to LSP

Coverage of 3rd generation

note small number of points in each bin

missing: SMS for decays via heavier EW-inos with visible decays to LSP

Coverage of light stops (1D)

Conclusions

- SMS constraints allow to exclude 55% (63%) of bino (higgsino) LSP points excluded by ATLAS.
- Efficiency maps provide more powerful constraints because they allow to combine contributions from different topologies to the same signal region
- Many points with gluino mass <1.4 TeV escape exclusion by SMS constraints; sharp drop in coverage as larger variety of decay channels opens

- To improve the coverage, we need results for asymmetric topologies, in particular gluino-squark associated production with arbitrary mass hierarchies (3 free param.)
- For stops/sbottoms, need efficiency maps for decays via heavier EW-inos, which in turn decay visibly into the LSP.
- If not provided by ATLAS/CMS, produce our own with MadAnalysis5 or Checkmate.

Conclusions

- SMS constraints allow to exclude 55% (63%) of bino (higgsino) LSP points excluded by ATLAS.
- Efficiency maps provide more powerful constraints because they allow to combine contributions from different topologies to the same signal region
- Many points with gluino mass <1.4 TeV escape exclusion by SMS constraints; sharp drop in coverage as larger variety of decay channels opens

Complex models can be decomposed into SMS components, but SMS do **not** fully map a complex model.

Nonetheless, SMS constraints can provide a **fast first filter** before going for time-consuming, dedicated simulations

BACKUP

Theory-experiment interaction, building tools for (re)interpretation

Search beyond the streetlight

Ensure long-term impact of results, use in global analyses, etc.

GitHub: ".... understand what someone outside your research project (or you in 5-10 years) would need to know about your data in order to build on your work."

We want to know what all(!) the LHC and other data tell us about the TeV scale and beyond

Methods

- More general,

more precise - Can test prospects of improving an analysis

Minus - Very CPU time consuming - Need detailed information from experiment about each analysis - So far only cut&count analyses

Fast, suitable for scans and model surveys

- Easy classification of uncovered signatures

<u>Minus</u>

Plus

- Only simple topologies
- Availability of multiple mass planes for interpolation
- Validity of SMS assumptions

Using Simplified Model results

Recasting based on MC event simulation

Machine learning techniques

-train an algorithm onto relation btw theory parameters and data

Fast and precise, but so far model-specific

curtesy Ursula Laa

8 TeV results in SModelS v1.1.1 database

ATLAS

CMS

SModelS database

	Analysis	ID	SModelS database		Analysis	ID	SModelS datab
	0 -lepton + 2–6 jets + E_T^{miss}	SUSY-2013-02*	6 UL, 2 EM		jets + $E_T^{\text{miss}}, \alpha_T$	SUS-12-028	4 UL
	0-lepton + 7–10 jets + E_T^{miss}	SUSY-2013-04*	1 UL, 10 EM [‡]		$3(1b-)$ jets + E_T^{miss}	SUS-12-024	2 UL, 3 EM
ive	1-lepton + jets + E_T^{miss}	SUSY-2013-20*	1 UL from CONF-2013-089	ark	jet multiplicity + H_T^{miss}	SUS-13-012	4 UL, 20 EM [‡]
lus	$ au(au/\ell) + ext{jets} + E_T^{ ext{miss}}$	SUSY-2013-10	_	nb	≥ 2 jets + E_T^{miss} , M_{T2}	SUS-13-019	8 UL
Inc	$SS/3$ -leptons + jets + E_T^{miss}	SUSY-2013-09	1 UL (+5 UL, CONF-2013-007)	, s	$\geq 1b + E_T^{\text{miss}}$, Razor	SUS-13-004	5 UL
	$0/1$ -lepton + $3b$ -jets + E_T^{miss}	SUSY-2013-18*	2 UL, 2 EM	inc	1 lepton $+ \ge 2b$ -jets $+ E_T^{\text{miss}}$	SUS-13-007	3 UL, 2 EM
	Monojet	_	 (but monojet stop, see below) 	Blu	2 OS lept. $+ \ge 4(2b)$ jets $+ E_T^{\text{miss}}$	PAS-SUS-13-016	2 UL
я	0-lepton stop	SUSY-2013-16*	1 UL, 1 EM	0	2 SS leptons + b-jets + E_T^{miss}	SUS-13-013	4 UL, 2 EM
tio	1-lepton stop	SUSY-2013-15*	1 UL, 1 EM		b -jets + 4 W s + E_T^{miss}	SUS-14-010	2 UL
era	2-leptons stop	SUSY-2013-19*	2 UL		$0 \text{ lepton} + \geq 5(1b) \text{ jets} + E_T^{\text{miss}}$	PAS-SUS-13-015	2 EM
gen	Monojet stop	SUSY-2013-21	4 EM	gen	$0 \text{ lepton} + \geq 6(1b) \text{ jets} + E_T^{\text{miss}}$	PAS-SUS-13-023	4 UL
p p	Stop with Z boson	SUSY-2013-08	1 UL	ñ	1 lepton $+ \ge 4(1b)$ jets $+ E_T^{\text{miss}}$	SUS-13-011	4 UL, 2 EM
hir	$2b$ -jets + $E_T^{ m miss}$	SUSY-2013-05*	3 UL, 1 EM [‡]	lid	b -jets + E_T^{miss}	PAS-SUS-13-018	1 UL
E	$tb+E_T^{\text{miss}}$, stop	SUSY-2014-07	_	Г	soft leptons, few jets + E_T^{miss}	SUS-14-021	2 UL
	ℓh	SUSY-2013-23*	1 UL	N	multi-leptons + E_{T}^{miss}	SUS-13-006	6 UL
eak	2-leptons	SUSY-2013-11	$4 \text{ UL}, 4 \text{ EM}^{\ddagger}$	포			
MO	$2-\tau$	SUSY-2013-14	—	in	cl. 'home-grown' EMs produced with	MadAnalysis5 or Ch	eckMATE recasting.
ctr	3-leptons	SUSY-2013-12	5 UL				
Ele	4-leptons	SUSY-2013-13	—				
	Disappearing Track	SUSY-2013-01	n.a. in current framework				
her	Long-lived particle		n.a. in current framework				
0f]	$H/A \rightarrow \tau^+ \tau^-$		n.a. in current framework				

* plus Fastlim EMs for preliminary version (conf note) of the analysis.

[‡] incl. 'home-grown' EMs produced with MadAnalysis5 or CheckMATE recasting.

Coverage of pMSSM by SMS results

	•			vvino nice	inggsmo-nkc
	0-lepton + 2–6 jets + $E_{\rm T}^{\rm miss}$	32.1%	35.8%	29.7%	33.5% 🖌
	0-lepton + 7–10 jets + $E_{\rm T}^{\rm miss}$	7.8%	5.5%	7.6%	8.0%
Multijet + MET	$0/1$ -lepton + 3 <i>b</i> -jets + $E_{\rm T}^{\rm miss}$	8.8%	5.4%	7.1%	10.1%
	1-lepton + jets + $E_{\rm T}^{\rm miss}$	8.0%	5.4%	7.5%	8.4%
	Monojet	9.9%	16.7%	9.1%	10.1% 🗡
Monojet 📕	SS/3-leptons + jets + $E_{\rm T}^{\rm miss}$	2.4%	1.6%	2.4%	2.5%
(mostly overlapping	$\tau(\tau/\ell)$ + jets + $E_{\rm T}^{\rm miss}$	3.0%	1.3%	2.9%	3.1%
(ith Multijet exclusion)	0-lepton stop	9.4%	7.8%	8.2%	10.2%
	1-lepton stop	6.2%	2.9%	5.4%	6.8%
	$2b$ -jets + $E_{\rm T}^{\rm miss}$	3.1%	3.3%	2.3%	3.6%
Stop searches	2-leptons stop	0.8%	1.1%	0.8%	0.7%
(less important, stop mostly heavy following Higgs constraints)	Monojet stop	3.5%	11.3%	2.8%	3.6%
	Stop with Z boson	0.4%	1.0%	0.4%	0.5%
	$tb + E_{\rm T}^{\rm miss}$, stop	4.2%	1.9%	3.1%	5.0%
	ℓh , electroweak	0	0	0	0 🖌
	2-leptons, electroweak	1.3%	2.2%	0.7%	1.6% 🖌
	2- τ , electroweak	0.2%	0.3%	0.2%	0.2%
Disappearing	3-leptons, electroweak	0.8%	3.8%	1.1%	0.6%
blouppouring	4-leptons	0.5%	1.1%	0.6%	0.5%
tracks	Disappearing Track	11.4%	0.4%	29.9%	0.1% 🗡
(important for	Long-lived particle	0.1%	0.1%	0.0%	0.1% 🗡
Wino-like SP!)	$H/A \to \tau^+ \tau^-$	1.8%	2.2%	0.9%	2.4% 🗙
	Total	(40.9%)	40.2%	45.4%	38.1%

slide by Ursula Laa, CERN re-interpretation workshop, June 2016

Most important missing topologies

Bino-like LSP

Higgsino-like LSP

T2 upper limit ratio

 \geq 2 jets + MET: CMS excludes a bit more than ATLAS

Tools for using SMS results

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/RecastingTools

- Fastlim : a tool to analyze BSM models based on the mass spectrum and branching ratios using simplified topologies. Limits from direct SUSY searches at the LHC are obtained from pre-calculated cross-section and efficiency maps. Can also quickly identify the important decay chains of the model by listing the dominant event topologies based on [cross section]x[branching ratio]. Limited to MSSM 11 ATLAS CONF note results from Run 1
- SModelS : general procedure to decompose the collider signatures of BSM models presenting a Z2 symmetry into SMS topologies, which are then confronted with the relevant experimental constraints. Also identifies the most important 'missing topologies' for which no experimental result is available. Version 1.0 is based on the use of UL maps. SModelS v1.1, released in January 2017, includes the use of efficiency maps, likelihood and χ2 calculations, an extended database of experimental results as well as major speed upgrades for both the code and the database.

results from 21 ATLAS and 23 CMS SUSY analyses, mostly Run 1+ some Run 2

 XQCAT (eXtra Quark Combined Analysis Tool) : a tool for the determination of exclusion confidence levels for scenarios with one or multiple heavy extra quarks (XQs) which interact with the SM quarks. The code uses a database of efficiencies for pre-simulated processes of QCD-induced pair production of the XQs and their subsequent on-shell decays in the narrow-width approximation. The recasting is performed upon 6 SUSY searches and 1 search for vector-like quarks (all of them from CMS, Run 1). Limited to extra heavy quarks 6 SUSY + 1 VLQ search from Run 1