CAFFEINE LOADING...

Caffeine free version

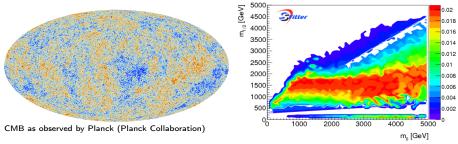
- Since 2009 observation of an excess of gamma ray photons in 3-4 GeV range from the galactic center by Fermi LAT
- Possible interpretation as annihilating dark matter
- Use Fermi data: Good fit results for MSSM
- Strong constraints from direct detection

Saving the MSSM from the GCE

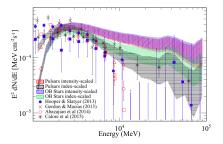
A. Butter 1 with S.Murgia 2, T. Plehn 1 and T. M. P. Tait 2

¹ITP, Universität Heidelberg, Germany

²Department of Physics and Astronomy, University of California, Irvine, USA


arXiv:1612.07115 to be published in PRD

There is physics beyond the Standard Model!

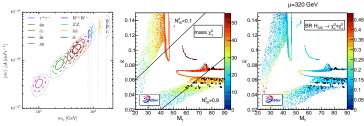

- 26.8% dark matter
- strong constraining power on the parameterspace

SFitter likelihood Fit, mSUGRA

There is more ...?

• Since 2009 observation of an excess of gamma ray photons in 3-4 GeV range from the galactic center by Fermi LAT [Hooper et al., Calore et al., Murgia for Fermi Collaboration]

Fermi collaboration, arXiv:1511.02938

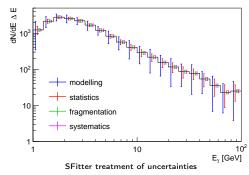

- Fermi LAT analysis settings:
 - NFW profile ($\alpha = 1., \beta = 3., \gamma = 1.2$)
 - 15×15 degree region around galactic center

1612.07115

Anja Butter

Previous work within NMSSM

- Best fit results by Calore et al. for light dark matter
- easier in NMSSM
- Connection with invisible Higgs decay



Calore, Cholis, McCabe, Weniger, arXiv:1411.4647

• End of 2015 Fermi LAT publish their own analysis

A closer look at the data

- Poisson distribution for statistic treatment
- correlated Gaussian for instrumental systematics (effective area)
- uncorrelated Gaussian uncertainties for spectrum
- flat theory uncertainties for background models (envelope)
 → spatial distribution of cosmic ray sources (OB-stars, Pulsars)

1612.07115

Anja Butter

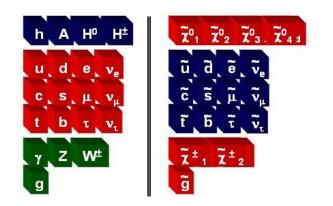
Likelihood function

Gauss:

$$\sqrt{-2\log\mathcal{L}_{Gauss}} = \begin{cases} \frac{s - (\tilde{s} + \sigma_{theo})}{\sigma_{sys,s}} & \text{for } \sigma_{theo} < s - \tilde{s} \\ 0 & \text{for } \sigma_{theo} > |s - \tilde{s}| \\ \frac{s - (\tilde{s} - \sigma_{theo})}{\sigma_{sys,s}} & \text{for } \sigma_{theo} < \tilde{s} - s \\ \end{cases}$$

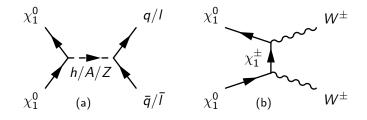
Poisson:

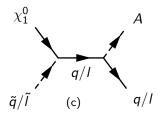
$$\mathcal{L}_{\mathsf{Poiss},d} = rac{P(d| ilde{d})}{P(ilde{d}| ilde{d})} = rac{ ilde{d}!}{d!} \, ilde{d}^{d- ilde{d}}$$


Combination:

$$\frac{1}{\log \mathcal{L}} = \frac{1}{\log \mathcal{L}_{Gauss}} + \frac{1}{\log \mathcal{L}_{Poiss}}$$

1612.07115

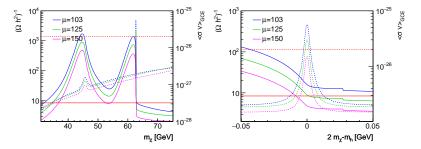

Anja Butter


The MSSM particle content

Annihilation channels I

 $\gamma-{\rm rays}$ radiated of SM particles during annihilation process

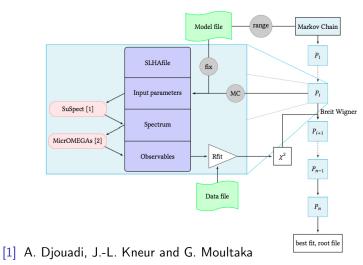
Anja Butter


Annihilation channels II

process	channel	σv
$\chi\chi o A o q\bar{q}$	s-channel	$c\lambda^4 rac{m_{\chi}^2}{(M_A^2 - 4m_{\chi}^2)^2}$
$\chi\chi ightarrow h ightarrow qar{q}$	s-channel	$c\lambda^4 rac{v^2 m_\chi^2}{(M_h^2 - 4m_\chi^2)^2}$
$\chi\chi o Z o q \bar{q}$	s-channel	$c\lambda^2\left[\frac{\lambda^2_{qZ_{2x}}m_q^2}{M_2^4}+\frac{v^2(\lambda^2_{qZ_{2x}}+\lambda^2_{qZ_V})m_\chi^2}{3(M_Z^2-4m_\chi^2)^2}\right]$
$\chi\chi ightarrow \chi \tilde{q} \bar{q} ightarrow q \bar{q}$	t-channel	$c\lambda^4 rac{(m_q+m_\chi)^2}{(M_{\tilde{q}}^2-m_q^2+m_\chi^2)^2}$

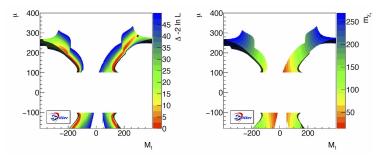
Table: Examples for simplified annihilation cross sections expanded in powers of v^2 assuming Majorana dark matter and light final states.

 $\chi \chi \rightarrow b \bar{b}$


Illustration of the velocity dependence

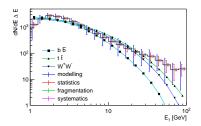
Inverse relic density (solid, left axis) and annihilation rate in the GC (dashed, right axis)

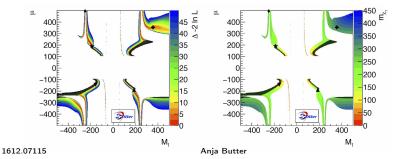
The Fit


[2] G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov

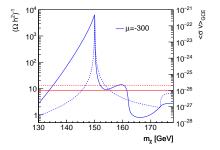
1612.07115

Anja Butter


Fitting the Fermi LAT spectrum I

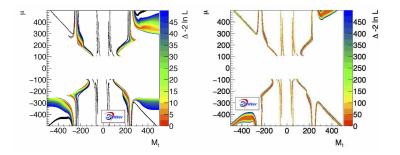

- $M_2 = 700$ GeV, sfermions and heavy Higgs decoupled
- A_t to adjust SM-like Higgs mass
- dwarf limits included
- · likelihood map determined by LSP mass and coupling
- WW, tt final states

Fitting the Fermi LAT spectrum II


- annihilation spectra for $\chi\chi \rightarrow b\bar{b}/t\bar{t}/WW$ for local best fit points
- $m_A = 500 \text{ GeV}$
- additional annihilation via pseudoscalar

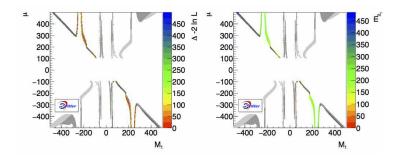
Why not $\chi\chi \rightarrow hh$?

• t-channel annihilation dominated by $\chi\chi
ightarrow WW$

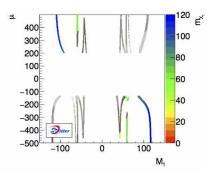


• $m_A = 300 \text{ GeV}, m_H = 320 \text{ GeV}$

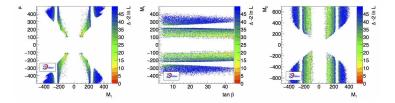
• annihilation to *hh* only possible via $\chi\chi \rightarrow H \rightarrow hh$


Fitting the Fermi LAT spectrum and the relic density

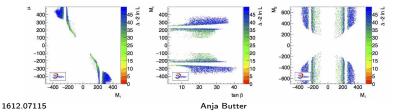
- left: likelihood map with black dots indicating the correct relic density
- the relic density favors smaller couplings
- right: fit including the relic density


Direct detection

- · exclusion limits from direct detection experiments
- light to dark: Xenon100, PandaX, LUX



Direct detection


- low $M_2 = 120$ GeV \rightarrow wino dark matter
- smaller coupling to light Higgs ightarrow avoids direct detection
- allowed masses $m_\chi pprox$ 45 GeV, 63 GeV, 100 120 GeV

A global analysis assuming $m_A = 500$ GeV Parameters:

Including LUX limits:

Conclusion

- $\gamma\text{-ray}$ excess observed in GC can be explained by annihilating dark matter
- Small tension between relic density and GCE can be resolved in MSSM
- Direct detection experiments can rule out most of the parameter space
- Future direct detection experiments will probe the remaining low mass regime

BACK UP

Couplings

$$g_{W\chi_{1}^{0}\chi_{1}^{\pm}} = \frac{g\sin\theta_{w}}{\cos\theta_{w}} \left(\frac{1}{\sqrt{2}}N_{14}V_{12}^{*} - N_{12}V_{11}^{*}\right)$$
(1)

$$g_{Z\chi_1^0\chi_i^0} = \frac{g}{2\cos\theta_w} \left(N_{13}N_{i3} - N_{14}N_{i4} \right)$$
(2)

$$g_{h\chi_{1}^{0}\chi_{1}^{0}} = (gN_{11} - g'N_{12}) (\sin \alpha N_{13} + \cos \alpha N_{14})$$
. (3)

Constraints

Measurement	Value
m _h	$(125.09\pm0.21_{stat}\pm0.11_{syst}\pm3.0_{theo})GeV$
$\Omega_{\chi}h^2$	$0.1188 \pm 0.0010_{\sf stat} \pm 0.0120_{\sf theo}$
a_{μ}	$(287\pm 63_{ m exp}\pm 49_{ m SM}\pm 20_{ m theo})\cdot 10^{-11}$
$BR(B o X_s \gamma)$	$(3.43 \pm 0.21_{\sf stat} \pm 0.07_{\sf syst}) \cdot 10^{-4}$
${\sf BR}(B^0_s o\mu^+\mu^-)$	$(3.2 \pm 1.4_{stat} \pm 0.5_{syst} \pm 0.2_{theo}) \cdot 10^{-9}$
$m_{\chi^+_1}$	> 103 GeV

Table: Data used for the fit including their systematic, statistical, and theoretical uncertainties, as appropriate.