B anomalies: a DM connection?

Jean Orloff (LPClermont) with D. Skodras & G. Hiller (TU Dortmund)

B Anomalies and Lepton Universality

- $R_{K(*)} = BR(B \rightarrow K^{(*)} \mu \mu) / BR(B \rightarrow K^{(*)} ee) (= 1 \text{ for SM} : \ll \text{ clean } \gg)$
- $B \rightarrow K^* \mu \mu$ angular observables
- BR($B_s \rightarrow \phi \mu \mu$)
- Most significant tensions reduced by a ~20% Lepton Flavour Universality Violating (LFUV) correction to SM contribution (e.g. « C_{9μ} »)

Largest pulls	$\langle P_5' \rangle_{[4,6]}$	$\langle P_5' \rangle_{[6,8]}$	$R_{K}^{[1,6]}$	$R_{K^*}^{[0.045,1.1]}$	$R_{K^*}^{[1.1,6]}$	$\mathcal{B}^{[2,5]}_{B_s ightarrow\phi\mu^+\mu^-}$	$\mathcal{B}^{[5,8]}_{B_s \to \phi \mu^+ \mu^-}$
Experiment	-0.30 ± 0.16	-0.51 ± 0.12	$0.745_{-0.082}^{+0.097}$	$0.66\substack{+0.113 \\ -0.074}$	$0.685^{+0.122}_{-0.083}$	0.77 ± 0.14	0.96 ± 0.15
SM prediction	-0.82 ± 0.08	-0.94 ± 0.08	1.00 ± 0.01	0.92 ± 0.02	1.00 ± 0.01	1.55 ± 0.33	1.88 ± 0.39
Pull (σ)	-2.9	-2.9	+2.6	+2.3	+2.6	+2.2	+2.2
Prediction for $C_{9\mu}^{\rm NP} = -1.1$	-0.50 ± 0.11	-0.73 ± 0.12	0.79 ± 0.01	0.90 ± 0.05	0.87 ± 0.08	1.30 ± 0.26	1.51 ± 0.30
Pull (σ)	-1.0	-1.3	+0.4	+1.9	+1.2	+1.8	+1.6

• PS: not addressing $R_{D(*)} = BR(B \rightarrow D^{(*)}\tau\nu) / BR(B \rightarrow D^{(*)}\mu\nu)$ here...

²J. Orloff @Montpellier' GdR/INR Terascale

Wilson coefficients Fits

• FCNC $b \rightarrow s$ transitions in the SM mostly come from *W*-*t*-v boxes, summarised by effective operators

$$\mathcal{H}_{\text{eff}} = -\frac{4\,G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C_i' O_i') + \text{h.c.} \quad \begin{array}{l} O_9 = (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \ell) \,, & O_9' = (\bar{s}\gamma_\mu P_R b)(\bar{\ell}\gamma^\mu \ell) \,, \\ O_{10} = (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \gamma_5 \ell) \,, \, O_{10}' = (\bar{s}\gamma_\mu P_R b)(\bar{\ell}\gamma^\mu \gamma_5 \ell) \,. \end{array}$$

- In the SM, for all leptons, $C_9 \approx -C_{10} \approx 4.32 \& C'_9 = -C'_{10} = 0$
- All fits (<u>D'Amico'1704.05438</u>, <u>Capdevila'1704.05340</u>, <u>Altmannshofer'1703.09189</u>, <u>Geng'1704.05446</u>) point in the same direction, with varying significance:

Capdevila'1704.05340

		All					LFUV				
_	1D Hyp.	Best fit	1σ	2σ	Pull _{SM}	p-value	Best fit	1σ	2σ	$\operatorname{Pull}_{\operatorname{SM}}$	p-value
-	$\mathcal{C}_{9\mu}^{ m NP}$	-1.10	[-1.27, -0.92]	[-1.43, -0.74]	5.7	72	-1.76	[-2.36, -1.23]	[-3.04, -0.76]	3.9	69
	$\mathcal{C}_{9\mu}^{ m NP} = -\mathcal{C}_{10\mu}^{ m NP}$	-0.61	[-0.73, -0.48]	[-0.87, -0.36]	5.2	61	-0.66	[-0.84, -0.48]	[-1.04, -0.32]	4.1	78
	${\cal C}_{9\mu}^{ m NP}=-{\cal C}_{9\mu}^{\prime}$	-1.01	[-1.18, -0.84]	[-1.33, -0.65]	5.4	66	-1.64	[-2.12, -1.05]	[-2.52, -0.49]	3.2	31
-	$\mathcal{C}_{9\mu}^{\rm NP} = -3\mathcal{C}_{9e}^{\rm NP}$	-1.06	[-1.23,-0.89]	[-1.39,-0.71]	5.8	74	-1.35	[-1.82, -0.95]	[-2.38, -0.59]	4.0	71

J. Orloff @Montpellier' GdR/INR Terascale

Tree Level Models

- Reasonable, to generate a large (~20%) correction to a SM-loop with a heavy particle
- Either s-channel Z' (Crivellin...), or t-channel leptoquark (Hiller...)

• But no DM connection, unless if *b*-*s*-*Z*' coupling is loop-generated (<u>Bélanger'1507.06660</u>). Bonus: g_{μ} -2 (another long standing issue...)

Minimal Loop Model

- See <u>Gripaios'1412.1791</u> for an exhaustive list
- Minimal set of BSM fields: 1 « squark » Φ_q , 1 « slepton » Φ_1 , 1 « neutralino » χ with Yukawa couplings:

$$\mathcal{L} = g_i^q \bar{\chi}_R Q_L^i \Phi_q + g_i^l \bar{\chi}_R L_L^i \Phi_l + \text{h.c.}$$

(poor man's Susy, with free Yukawas)

J. Orloff @Montpellier' GdR/INR Terascale

Field

 Q_L^i

 $\mathcal{G}_{\mathrm{SM}}$

(Adding flavour symmetries)

- BSM new fields can be embedded into
 - Froggat-Nielsen construction for (s)quarks ($\rightarrow g^{q}_{2}g^{q}_{3} = 0.04$)
 - A₄ × Z₃ symmetry (<u>Feruglio'1205.5133</u>) for neutrino mixings
 (→ only one g^l can differ from zero: « explains » LFUV)
- $U(1)_{\chi}$ (or $Z_{2\chi}$ if Majorana) stabilizes χ as DM candidate

Field	$\mathcal{G}_{ ext{SM}}$	$A_4 \times U(1)_{\rm FN} \times Z_3$	$U(1)_{B'} \times U(1)_{L'} \times U(1)_{\chi}$				
Q_L^i	$(3,2,\frac{1}{6})$	$(1, \Upsilon_{Q_i}, \omega)$	$(\frac{1}{3},0,0)$				
U_R^i	$(3,1,rac{2}{3})$	$(1, \Upsilon_{U_i}, \omega^2)$	$(\frac{1}{3},0,0)$				
D_R^i	$(3,1,-\frac{1}{3})$	$(1, \Upsilon_{D_i}, \omega^2)$	$(\frac{1}{3},0,0)$				
L_L^i	$(1,2,-\frac{1}{2})$	$(3,\!0,\!\omega)$	(0,1,0)				
E_R^i	$(1,1,-\bar{1})$	$(1^{(\prime,\prime\prime)},\Upsilon_{E_{i}},\omega^{2})$	$(0,\!1,\!0)$				
H	$(1,\!2,\!rac{1}{2})$	$(1,\!0,\!1)$	$(0,\!0,\!0)$				
χ	(1,1,0)	$(1,\!0,\!\omega)$	$(0,\!0,\!1)$				
	$(1,\!3,\!0)$	$_{(1,0,\omega)}$	$(0,\!0,\!1)$				
Φ_l	$(1,2,\frac{1}{2})$	$(1'',\!0,\!1)$	(0,-1,1)				
Φ_q	$(3,2,-\bar{1}_{6})$	$(1,\!0,\!1)$	$(-\frac{1}{3},0,1)$				
J. Orloff @Montpellier' GdR/INR Terascale							

- Δm_s forbids large values of g^q and/or low values of $M_{\Phi q}$
- For FN values of g^q and $M_{\Phi q} > 950$ GeV, there is no constraint

⁸ J. Orloff @Montpellier' GdR/INR Terascale

Constraints: direct production @LHC

• We impose squark and slepton searches limits: $M_{\Phi q} > 950 \text{ GeV}$ (sbottom: ATLAS-CONF-2017-038) $M_{\Phi l} > 300 \text{ GeV}$ (slepton_1 ATLAS'1403.5294, recently updated: $M_{\Phi l} > 500 \text{ GeV}$ (ATLAS-CONF-2017-039)

9 J. Orloff @Montpellier' GdR/INR Terascale

Relic density & Indirect detection

- Dominated by the tree annihilation into fermions (below WW threshold)
- Helicity suppression favours bb, but large slepton Yukawa wins

$$\langle \sigma v \rangle \left(\bar{\chi}^0 \chi^0 \to \bar{f} f \right) = \frac{N_c g_f^4}{32\pi m_\chi^2 \left(1 + x_f \right)^2} \left(\frac{m_f^2}{m_\chi^2} + \frac{2\left(1 + x_f^2 \right)}{3\left(1 + x_f \right)^2} v^2 \right). \qquad \chi^0$$

• $\rightarrow v^2$ term controls primordial annihilation, and no ID signal

10 J. Orloff @Montpellier' GdR/INR Terascale

 χ^0

Direct Detection

 Even including loop-interactions to gluonsdoesn't allow for more than ~10⁻⁴⁹ cm⁻² for 100 GeV neutralino and 1 TeV squark

$$\hat{\sigma}_N^{\text{SI}} = \frac{4\mu_N^2}{\pi} \left(Zf_p + (A - Z)f_n \right)^2 \qquad \qquad \frac{f_N}{m_N} = \frac{m_\chi}{M_{\Phi_q}^4} \sum_{q,Q} |g^q|^2 \left[\frac{f_{TG}}{108} + \frac{3}{12} \left(q(2) + \bar{q}(2) \right) \right]$$

 \rightarrow no DD constraints in the near future

11

J. Orloff @Montpellier' GdR/INR Terascale

Relic density vs $C_9 (m_{\chi} - g')$

Fixing $M_{\Phi q} = 950 \text{ GeV}$; $M_{\Phi l} = 300 \text{ GeV}$ $\rightarrow g^l$ is pushed close to non-perturbative upper limit (~3.5) 12 J. Orloff @Montpellier' GdR/INR Terascale

Relic density vs $C_9 (m_{\chi} - M_l)$

→ LHC M_l limit is pushing out of the C_9 1- σ band (! WW threshold) 13 J. Orloff @Montpellier' GdR/INR Terascale

Conclusion

- Loop models for $C_9 = -C_{10}$ explanations of B anomalies generically offer a DM candidate
- Relic density may (still...) be compatible,
- But DD an ID detection cannot be put to use.
- Instead, direct LHC searches seriously shrink the parameter space
- (most appealing model $(\chi, \Phi_l, \Phi_q) = (3, 4, 2)_{SU(2)}$ accomodating $(g-2)_{\mu}$ is already excluded; $(1, 2, 2)_{SU(2)}$ studied here only accounts for 20%)
- Maximal LFUV is compatible with flavour symmetries

14 J. Orloff @Montpellier' GdR/INR Terascale