Recent progress in precision dark matter calculation

Björn Herrmann

Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTh) Université Savoie Mont Blanc / CNRS — Annecy, France

GDR/IRN Terascale — 3rd - 5th July 2017 — Montpellier

Dark matter relic abundance — freeze-out picture

Time evolution of number density of the relic particle described by Boltzmann equation — key ingredient from particle physics: (co-)annihilation cross-section

Dark matter relic abundance — freeze-out picture

Time evolution of number density of the relic particle described by Boltzmann equation — key ingredient from particle physics: (co-)annihilation cross-section

$$\begin{aligned} \frac{\mathrm{d}n}{\mathrm{d}t} &= -3Hn - \langle \sigma_{\mathrm{ann}}v \rangle \left(n^2 - n_{\mathrm{eq}}^2\right) & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & &$$

Dark matter relic abundance — freeze-out picture

Time evolution of number density of the relic particle described by Boltzmann equation — key ingredient from particle physics: (co-)annihilation cross-section

Computational tools allow an efficient calculation of the (neutralino) relic density: DarkSUSY Bergström, Edsjö, Gondolo et al. 2004-2017, micrOMEGAs Bélanger, Boudjema, Pukhov et al. 2003-2017, SuperIsoRelic Arbey, Mahmoudi 2008, ...

Motivation for higher order corrections

All processes implemented in public codes — but only at the (effective) tree-level

Motivation for higher order corrections

All processes implemented in public codes — but only at the (effective) tree-level

Higher-order loop corrections can give important contributions to cross-sections In particular, sizeable impact from QCD corrections due to strong coupling constant More precise theoretical predictions needed to keep up with experimental improvements

Motivation for higher order corrections

All processes implemented in public codes — but only at the (effective) tree-level

Higher-order loop corrections can give important contributions to cross-sections In particular, sizeable impact from QCD corrections due to strong coupling constant More precise theoretical predictions needed to keep up with experimental improvements

DM@NL project — Provide calculation of σ_{ann} including QCD corrections — Extension to public codes (e.g. micrOMEGAs, DarkSUSY)...

Similar setup for use with DarkSUSY in development...

J. Edsjö, J. Harz, B. Herrmann, C. Niblaeus — in progress...

Provide a **next-to-leading order calculation** (in QCD) for the neutralino (co-)annihilation cross section (and thus for the neutralino relic density)

Provide a **next-to-leading order calculation** (in QCD) for the neutralino (co-)annihilation cross section (and thus for the neutralino relic density)

Definition and implementation of a dedicated renormalization scheme Infrared treatment — phase space slicing and dipole subtraction à la Catani-Seymour Resummation of Coulomb corrections for stop-stop annihilation Application of the results to direct detection Interfaces to micrOMEGAs (since 2008) and DarkSUSY (work in progress)

Outline

Motivation

Corrections to the neutralino (co)annihilation cross-section and impact on relic density

Application to direct dark matter detection

Scale dependence and theoretical uncertainty

Conclusion

M. Klasen, K. Kovařík, P. Steppeler — Phys.Rev. D94: 095002 (2016) — arXiv:1607.06396 [hep-ph]
J. Harz, B. Herrmann, M. Klasen, K. Kovařík, P. Steppeler — Phys. Rev. D 93: 114023 (2016) — arXiv:1602.08103 [hep-ph]
J. Harz, B. Herrmann, M. Klasen, K. Kovařík, M. Meinecke — Phys. Rev. D 91: 034012 (2015) — arXiv:1410.8063 [hep-ph]
J. Harz, B. Herrmann, M. Klasen, K. Kovařík — Phys. Rev. D 91: 034028 (2015) — arXiv:1409.2898 [hep-ph]
B. Herrmann, M. Klasen, K. Kovařík, M. Meinecke, P. Steppeler — Phys. Rev. D 89: 114012 (2014) — arXiv:1404.2931 [hep-ph]
J. Harz, B. Herrmann, M. Klasen, K. Kovařík, Q. Le Boulc'h — Phys. Rev. D 87: 054031 (2013) — arXiv:1212.5241 [hep-ph]
B. Herrmann, M. Klasen, K. Kovařík — Phys. Rev. D 79: 061701 (2009) — arXiv:0901.0481 [hep-ph]
B. Herrmann, M. Klasen, K. Kovařík — Phys. Rev. D 80: 085025 (2009) — arXiv:0907.0030 [hep-ph]
B. Herrmann, M. Klasen — Phys. Rev. D 76: 117704 (2007) — arXiv:0709.0043 [hep-ph]

Corrections to neutralino (co-)annihilation and impact on the relic density

Neutralino pair annihilation into top quarks

B. Herrmann, M. Klasen, K. Kovařík — Phys. Rev. D 80: 085025 (2009) — arXiv:0907.0030 [hep-ph] B. Herrmann, M. Klasen, K. Kovařík, M. Meinecke, P. Steppeler — Phys. Rev. D 89: 114012 (2014) — arXiv:1404.2931 [hep-ph]

Neutralino pair annihilation into top quarks

Neutralino pair annihilation into top quarks

Annihilation cross-section enhanced by up to 50% by radiative corrections Corrections can lead to important shifts for preferred regions (e.g. ~200 GeV for m_{stop})

Effective Yukawa couplings (as e.g. in micrOMEGAs) very good approximation around Higgsresonances, but other sub-channels can be dominant (here: Z⁰/squark-exchange)

Neutralino-stop co-annihilation

Relative corrections of up to 40-50% observed for the co-annihilation cross-section, leading to a numerically important shift for the predicted neutralino relic density (up to about 25% — more than Planck uncertainty!)

Co-annihilation into SM-like Higgs and gluon most important (other final states generally subdominant)

Harz, Herrmann, Klasen, Kovařík, Le Boulc'h — Phys. Rev. D 87: 054031 (2013) — arXiv:1212.5241 [hep-ph] Harz, Herrmann, Klasen, Kovařík — Phys. Rev. D 91: 034028 (2015) — arXiv:1409.2898 [hep-ph]

Application to direct detection

Renormalization (same scheme as before) in order to treat ultraviolet divergencies Infrared divergencies cancel between the different contributions Dedicated integral reduction procedure applicable to zero-velocity limit Renormalization group running of effective theory from Q~I TeV to Q~5 GeV

Klasen, Kovařík, Steppeler — Phys.Rev. D94: 095002 (2016) — arXiv:1607.06396 [hep-ph]

Klasen, Kovařík, Steppeler — Phys.Rev. D94: 095002 (2016) — arXiv:1607.06396 [hep-ph]

Interlude — a few technical details

Loop diagrams include UV-divergent integrals → **Renormalization!**

Hybrid on-shell/DR renormalization scheme for the squark sector (3rd generation), which is applicable to all (co)annihilation processes

Interlude — a few technical details

Loop diagrams include UV-divergent integrals → **Renormalization!**

Hybrid on-shell/DR renormalization scheme for the squark sector (3rd generation), which is applicable to all (co)annihilation processes

Loop diagrams contain **IR-divergencies** (soft and/or collinear), which vanish when taking into account the real emission of a gluon $(2 \rightarrow 3 \text{ processes})$

Dipole Subtraction Method and Phase Space Slicing Catani, Seymour (2001)

$$\sigma_{\rm NLO} = \int_{3} \left[\mathrm{d}\sigma^{\rm R} \Big|_{\epsilon=0} - \mathrm{d}\sigma^{\rm A} \Big|_{\epsilon=0} \right] + \int_{2} \left[\mathrm{d}\sigma^{\rm V} + \int_{1} \mathrm{d}\sigma^{\rm A} \right]_{\epsilon=0}$$

Evaluation of theoretical uncertainty by varying (unphysical) renormalization scale — hybrid on-shell / DRbar renormalization scheme designed for neutralino (co-)annihilation

J. Harz, B. Herrmann, M. Klasen, K. Kovařík, P. Steppeler — Phys. Rev. D 93: 114023 (2016) — arXiv:1602.08103 [hep-ph]

Evaluation of theoretical uncertainty by varying (unphysical) renormalization scale — hybrid on-shell / DRbar renormalization scheme designed for neutralino (co-)annihilation

 $\mu_{\mathsf{R}} = 500 \dots 2000 \,\, \mathsf{GeV}$

$$A_t, A_b, \theta_{\tilde{t}}, \theta_{\tilde{t}}, \alpha_s, m_b$$

scale-dependent parameters

Within the scale uncertainty, the **tree-level result agrees** with the NLO calculation and the micrOMEGAs value

Scale uncertainty reduced at the one-loop level w.r.t. to tree-level result (as expected)

- main effect from mixing angle and trilinear coupling
- dependence of α_s subdominant

Evaluation of theoretical uncertainty by varying (unphysical) renormalization scale — hybrid on-shell / DRbar renormalization scheme designed for neutralino (co-)annihilation

 $\mu_{\mathsf{R}} = 500 \dots 2000 \text{ GeV}$

 $(A_t, A_b, \theta_{\tilde{t}}, \theta_{\tilde{t}}, \alpha_s, m_b)$

Within the scale uncertainty, the **tree-level result agrees** with the NLO calculation and the micrOMEGAs value

Scale uncertainty reduced at the one-loop level w.r.t. to tree-level result (as expected)

- main effect from mixing angle and trilinear coupling
- dependence of α_s subdominant

Conclusion

Summary and perspectives

Experimental improvements require more precise theory predictions for dark matter

DM@NL — calculation of neutralino (co-)annihilation including QCD corrections

Impact of corrections on the relic density more important than current exp. uncertainty

— Higher-order corrections important when extracting parameters from cosmological data

Analysis of the theory uncertainty shows that the **relic density cannot always be predicted** with a precision of 2% similarly to the experimental result

Summary and perspectives

Experimental improvements require more precise theory predictions for dark matter

DM@NL — calculation of neutralino (co-)annihilation including QCD corrections

Impact of corrections on the relic density more important than current exp. uncertainty

— Higher-order corrections important when extracting parameters from cosmological data

Analysis of the theory uncertainty shows that the **relic density cannot always be predicted** with a precision of 2% similarly to the experimental result

Next steps...

- complete code with stop-stop annihilation processes
- include other new physics' models
- implement dipole subtraction scheme for all process classes
- provide some public form of the code

Summary and perspectives

Experimental improvements require more precise theory predictions for dark matter

DM@NL — calculation of neutralino (co-)annihilation including QCD corrections

Impact of corrections on the relic density more important than current exp. uncertainty

- Higher-order corrections important when extracting parameters from cosmological data

Analysis of the theory uncertainty shows that the **relic density cannot always be predicted** with a precision of 2% similarly to the experimental result

Next steps...

- complete code with stop-stop annihilation processes
- include other new physics' models
- implement dipole subtraction scheme for all process classes
- provide some public form of the code

