

Dark matter round table discussion

IRN - Terascale 2017, Montpellier

Why a *table ronde*?

To create a space for informal discussion, in which

- \cdot We exchange ideas and debate interesting questions in DM physics.
- \cdot We discuss our ideas with other colleagues and get a second (or even first!) opinion about potential projects.
- \cdot We develop collaborations with other colleagues possessing complementary expertise.

The plan

- For this first edition of the round table
- \cdot Seven colleagues will briefly present a topic of their choice and initiate a conversation.
- You are all encouraged to participate in the discussion!

Looking forward to your valuable feedback for future sessions!

Outline

- Bradley Kavanagh (LPTHE Paris): Direct detection (TH)
- · Julien Billard (IPNL Lyon): Direct detection (EXP)
- · Geneviève Bélanger (LAPTh Annecy): Dark matter candidates (TH)
- Marc Besançon (IRFU Saclay): Dark matter at the LHC (EXP)
- Francesca Calore (LAPTh Annecy): Indirect detection low-energy gamma-rays (TH)
- · Julien Lavalle (LUPM Annecy): Indirect detection astrophysical aspects (TH)
- Emmanuel Moulin (IRFU Saclay): Indirect detection high-energy gamma-rays (EXP)

Bradley Kavanagh

LPTHE – Paris

Direct detection (TH)

Coming up with a *standard* for Direct Detection results/data...

...to aid recasting & re-use in the pheno community

Preliminary discussion and tools at:

https://github.com/bradkav/DirectDetectionStandard/wiki

or if you don't like typing:

tinyurl.com/terascale

Bradley J. Kavanagh (LPTHE), in collaboration with Jayden L. Newstead (ASU)

Julien Billard

IPNL – Lyon

Direct detection (EXP)

Round Table discussion: Low Mass Dark Matter

Julien Billard Institut de Physique Nucléaire de Lyon / CNRS / Université Lyon 1

Based on: Dark Sector 2016 Workshop - arXiv:1608.08632

GDR Terascale July 3rd, 2017

State of the art: standard WIMP searches

 So far most of the efforts have been focusing on the standard GeV - TeV SUSY motivated

 Julien Billard (IPNL)
 WIMP, but nothing promising so far...

Beyond the Nuclear Recoil signature

Beyond the WIMP paradigm

The WIMP candidate only covers a small fraction of the possible phase space !

- Cosmological constraints motivate searching for DM as light as keV (structure formation)
- Requires new dark sectors with the existence of new light bosons connecting the dark (hidden) sector to the Standard Model
- Excellent probe for new physics beyond the Standard Model (and outside SUSY)

Few experimental examples

- Noble liquids (14 eV): sensitivity to single electron from S2 only analysis demonstrated (first experimental limit on these new searches)
- Semiconductors (~3 eV):
 - ionization only in Si (DAMIC/SENSEI): sub-single electron demonstrated
 - ionization + heat in Ge (SCDMS and EDELWEISS): yet to be demonstrated
- Supraconductors (~meV): R&D has yet to be started (at least for that specific purpose)

For all of these techniques: unknown backgrounds and calibration challenges ahead !!! Julien Billard (IPNL)

Toward new possible ways to collaborate...

• From the theory side:

- Are these new searches useful / meaningless ?
- Do we have candidates that can be reachable, not only threshold wise, but from their crosssection and expected interaction rates ?
- Where should we focus our effort on (parameters scans, new « focus point ») ?

From the experimental side:

- In France most existing DD technology are represented, can we collaborate more on common issues: low background, low noise electronics and readout techniques and low energy calibration methods ?
- All existing technologies have pros' and cons', could we think of a new alternative technology dedicated to these searches ?

Geneviève Bélanger

LAPTh – Annecy

DM candidates (TH)

Dark matter models and light particles

- Much emphasis on 100GeV Wimps for astroparticle/collider studies
- But candidates with mass below GeV scale are also possible, light wimps or light FIMPs ...
- Moreover many models propose light mediators
- Project : investigate new dark matter models with GeV scale new particles and their phenomenology : relic density, direct detection, high intensity frontier, cosmology, colliders

Freeze-in

- DM particles are NOT in thermal equilibrium with SM
- Recall

• Initial number of DM particles is very small

$$\begin{split} \dot{n}_{\chi} + 3Hn_{\chi} &= \langle \sigma v \rangle_{X\bar{X} \to \chi\bar{\chi}}(T) n_{eq}^2(T) + n_{eq}(T) \Gamma_{Y \to \chi\chi}(T) \\ \hline \\ & \\ \hline \\ \text{annihilation} \\ \hline \\ \\ \text{(X,Y in Th.eq. With SM)} \end{split}$$

A simple example

• Simplified FIMP model : SM+ majorana fermion (DM) + real scalar + Z₂ symmetry (Klasen, Yaguna, 1309.2777

- Light wimp (30 MeV) affect CMB number of equivalent neutrinosand BBN - Nollett, Steigman 1312.5725
- Other cosmological constraints : dark sector sensitive to primordial initial conditions in freeze-in
- Direct detection : new projects to search for very light DM with new materials e.g. semiconductor, superconductors, exploit DM-escattering others DM -nucleus

Marc Besançon

IRFU – Saclay

Dark matter at the LHC (EXP)

Dark Matter round table

DM searches at the LHC

• MET + X searches

• invisible Higgs boson decay

interpretation in terms of simplified models

4 parameters : DM mass , mediator mass , mediator coupling to SM, to DM

direct search for mediator (dijet)

comparison with Direct and Indirect Detection (DD, ID)

1

Marc Besançon

Dark Matter round table

DM searches at the LHC

- MET + X, mediator direct search and invisible Higgs searches to continue at the LHC at Run2, Run 3 ... as well as interpretation within simplified models improving on many items e.g. :
 - reducing syst. uncertainties (e.g. Z+jet,/W+jet ratio in monojet)
 - backgrounds (NLO V+jets)
 - mediator width

-

- comparison with DD (ID) e.g. running coupling from LHC to DD scales
- "conventional" simplified model interpretations model building with DM, mediator and interactions (SM gauge charge for DM and mediator) and spin of DM (0, 1/2, 1, 3/2), spin of mediator (0, 1/2, 1, 2), interaction of mediator to DM/SM
- "conventional" simplified DM models → non conventional simplified models ?
 - e.g. Dark gauge symmetry (dark U(1), SU(N))? Thermal DM? Hidden valley via Higgs portal? others?
 - additional signatures to search for DM at the LHC (displaced vertices/jets, emerging jets)?
 - comparison with DD, ID ?
- continue searches in the context of more specific ("complete") models

Francesca Calore

LAPTh – Annecy

Indirect detection – low-energy gamma-rays (TH) IRN Terascale@Montpellier Dark matter round table 3rd July 2017

Dark matter searches with sub-GeV gamma rays

Francesca Calore — <u>calore@lapth.cnrs.fr</u>

Laboratoire d'Annecy-le-Vieux de Physique Théorique

Université Savoie-Mont Blanc

The future of gamma-ray astronomy

Differential 5σ point source sensitivities of future gamma-ray instruments (for different observing times)

Compton domain							
	e-ASTROGAM	COMPAIR	ADEPT				
Energy range [MeV]	0.3 - 10	0.2 - 10	_				
$\Delta E/E$	1.3%	2%– $5%$	_				
$A_{ m eff}~[m cm^2]$	50 - 560	50-250	_				
FoV [sr]	2.9	3					
Pair-conversion domain							
	e-ASTROGAM	COMPAIR	ADEPT				
Energy range [MeV]	10 - 3000	10 - 500	5 - 200				
$\Delta E/E$	20 – 30%	12%	30%				
$A_{ m eff}~[m cm^2]$	215 - 1810	20 - 1200	50 - 700				
FoV [sr]	2.5	3	3				

Energy range: 0.2 MeV — few GeV O(10) improved energy and angular resolution Large field of view (2.5 sr) Able to detect photon polarisations for both transient and steady-state sources

[AMEGO mission, proposed for NASA]

sub-GeV dark matter gamma rays

Prompt photons

 $\chi\chi\to\gamma\gamma$

gamma-ray line @ $E_{\gamma} = m_{\chi}$

 $\chi\chi\to\pi^0\pi^0$

gamma-ray box

Boddy & Kumar, Phys. Rev. D92, 023533 (2015); Boddy+ Phys. Rev. D94, 095027 (2016)

Other spectral features from:

Quarkonium (monochromatic photons)

Srednicki+ PRL 56, 263 (1986); Rudaz PRL 56, 2128 (1986)

- 4th generation quarks decay in s + photon (step-like)
- De-excitation of mesons (D,B) from bb, cc DM

Radiative emission

$$\chi\chi \to \pi^+\pi^-$$

$$\chi\chi\to\ell^+\ell^-\ \ell=e,\mu$$

$$\chi\chi \to \phi\phi \ \phi \to e^+e^-$$

E.m. radiative corrections, in-flight annihilation, bremsstrahlung, inverse Compton Bartels+, JCAP 05 (2017) 001

Bergström, Nucl. Phys. B325, 647 (1989)

Bringmann+ PRD 95, 043002 (2017)

Constraints on MeV dark matter from CMB (s-wave) and BBN

Some open issues

Dark matter MeV/sub-GeV models

- Viable DM models @ MeV masses? [BBN, CMB, diffuse photons constraints]
- Other annihilation channels [e.g. relevance of EW corrections?]
- ALPs/photon coupling oscillations at low energies?

Radiative emission modelling

Understanding low-energy CR propagation [almost no constraints from current data]

Astrophysical background and dark matter

- Resolving most of Fermi-LAT unassociated sources (spectrum E⁻²) => Sensitivity to DM subhalos? [angular resolution]
- Discriminating nuclear gamma-ray lines from low energy CR vs DM spectral lines [angular resolution; spatial analysis]
- Discriminating origin of GeV excess (DM vs MSPs) based on spectral analysis [angular resolution]

Julien Lavalle

LUPM – Annecy

Indirect detection – astrophysical aspects (TH)

Emmanuel Moulin

IRFU – Saclay

Indirect detection – high-energy gamma-rays (EXP)

Dark matter round table : Indirect detection with HE/VHE gamma-rays

Observations of nearby dwarf galaxies with Fermi-LAT

Inner Galactic halo observations with H.E.S.S.

- Dwarf galaxies: modest signal, potentially low background
- Inner Galactic halo : large signal, large background
 - Two complementary targets
- Strongest gamma-ray limits on annihilating dark matter

Dark matter round table : Indirect detection with HE/VHE gamma-rays

Observations of nearby dwarf galaxies with Fermi-LAT

Inner Galactic halo observations with H.E.S.S.

Strongest gamma-ray limits on annihilating dark matter

Dwarf Milky Way satellites

- New surveys ongoing
 - 45 stellar systems :
 28 confirmed dSphs and 17 newly discovered candidates by DES

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Name	1,6	Distance	$r_{1/2}$	\dot{M}_V	$\log_{10}(\hat{J}_{meas})$	$\log_{10}(J_{\text{pred}})$	Sample	
	(deg, deg)	(kpc)	(pc)	(mag)	$\log_{10}(\text{GeV}^2 \text{ cm}^{-5})$	$\log_{10}(\text{GeV}^2 \text{ cm}^{-5})$		
Kinemetically Confirmed Calavies								
Boöter I*	358.08 60.62	66	180	-6 3	18.2 ± 0.4	18.5	INC	
Boötes II	353.60 68.87	42	46	-0.3	10.2 ± 0.4	18.0	INC	
Boötes III	35.41 75.35	47	-10	-5.8		18.8	I N	
Canes Venatici I	74 31 70 82	218	441	-8.6	17.4 ± 0.3	17.4	INC	
Canes Venatici II*	113.58 82.70	160	52	-4.9	17.6 ± 0.4	17.7	LNC	
Carina*	260.1122.22	105	205	-9.1	17.9 ± 0.1	18.1	LNC	
Coma Berenices*	241.89, 83.61	44	60	-4.1	19.0 ± 0.4	18.8	LNC	
Draco*	86.37.34.72	76	184	-8.8	18.8 ± 0.1	18.3	LNC	
Draco II	98.29, 42.88	24	16	-2.9	1010 ± 011	19.3	LNC	
Fornax*	237.1065.65	147	594	-13.4	17.8 ± 0.1	17.8	LN.C	
Hercules*	28.73, 36.87	132	187	-6.6	16.9 ± 0.7	17.9	I.N.C	
Horologium I	271.38, -54.74	87	61	-3.5		18.2	LN.C	
Hydra II	295.62, 30.46	134	66	-4.8		17.8	I.N.C	
Leo I	225,99, 49,11	254	223	-12.0	17.8 ± 0.2	17.3	I.N.C	
Leo II*	220.17, 67.23	233	164	-9.8	18.0 ± 0.2	17.4	I.N.C	
Leo IV [*]	265.44, 56.51	154	147	-5.8	16.3 ± 1.4	17.7	I,N,C	
Leo V	261.86, 58.54	178	95	-5.2	16.4 ± 0.9	17.6	I,N,C	
Pisces II	79.21, -47.11	182	45	-5.0		17.6	I.N.C	
Reticulum II	266.30, -49.74	32	35	-3.6	18.9 ± 0.6	19.1	I,N,C	
Sculptor*	287.53, -83.16	86	233	-11.1	18.5 ± 0.1	18.2	I,N,C	
Segue 1 [*]	220.48, 50.43	23	21	-1.5	19.4 ± 0.3	19.4	I,N,C	
Sextans*	243.50, 42.27	86	561	-9.3	17.5 ± 0.2	18.2	I,N,C	
Triangulum II	140.90, -23.82	30	30	-1.8		19.1	I,N,C	
Tucana II	328.04, -52.35	58	120	-3.9		18.6	I,N,C	
Ursa Major I	159.43, 54.41	97	143	-5.5	17.9 ± 0.5	18.1	I,N,C	
Ursa Major II*	152.46, 37.44	32	91	-4.2	19.4 ± 0.4	19.1	I,N,C	
Ursa Minor [*]	104.97, 44.80	76	120	-8.8	18.9 ± 0.2	18.3	I,N,C	
Willman 1*	158.58, 56.78	38	19	-2.7		18.9	I,N	
<u></u>		100		 Like 	ly Galaxies			
Columba I	231.62, -28.88	182	101	-4.5		17.6	I,N,C	
Eridanus II	249.78, -51.65	331	156	-7.4		17.1	I,N,C	
Grus I	338.68, -58.25	120	60	-3.4		17.9	I,N,C	
Grus II	351.14, -51.94	53	93	-3.9		18.7	I,N,C	
Horologium II	262.48, -54.14	78	33	-2.6		18.3	I,N,C	
Indus II Damana III	354.00, -37.40	214	181	-4.3		17.4	I,N,C	
Pegasus III Dhaanin II	09.80, -41.81	205	22	-9.1		10.1	I,N,C	
Phoenix II Distor I	323.09, -39.14	106	33	-0.1		17.0	INC	
Pictor I Reticulum III	207.29, -40.04	02	64	-0.1		18.9	INC	
Sprittarine II	18.04 -22.00	67	34	-5.2		18.4	INC	
Theorem III	215 28 56 19	25	44	0.4		10.9	I N	
Tucana IV	313 29 -55 20	48	128	-2.4		18.5	INC	
Tutana TV	010.20, -00.20	-10	120	Ambig	uous Systems —	10.7	1,11,0	
Cetus II	156.4778.53	30	17	0.0		19.1	I	
Eridanus III	274.95, -59.60	96	12	-2.4		18.1	Ĩ	
Kim 2	347.16, -42.07	105	12	-1.5		18.1	I	
Tucana V	316.31, -51.89	55	16	-1.6		18.6	I	

Emmanuel Moulin, IRN Terascale, Montpellier 2017

Dwarf Milky Way satellites

- New surveys ongoing
 - 45 stellar systems :
 28 confirmed dSphs and 17 newly discovered candidates by DES

- The next generation of surveys (i.e., LSST) should complete our census of the ultrafaint dwarfs out to the virial radius of the Milky Way
- Fermi-LAT will continue to observe any new discoveries
- All IACTs have programs to observe new ultra-faint dwarf galaxies
- Significant recent works on the modelling of DM distribution in dwarf galaxies
 - in particular, systematics from Jeans modelling framework

Inner Galactic halo

- H.E.S.S. is leading since 2015 a large observation program of the inner 5 degrees of the inner Galactic halo
- Dark matter distribution is not well not known
 - Dynamics is dominated by stars and gas
 - in the inner kpc of the MW

Near future: Cherenkov Telescope Array

- Fermi/CTA will be able to probe thermal WIMPs from a few GeV up to a few tens of TeV
- Thermal WIMPs strongly constraints in the next few years

Observation strategy in gamma-rays

- Ground-based telescope experiments i.e. IACTs
 - The inner region of the Milky Way halo harbors a large amount of dark matter:
 → Given its proximity, it is one of the most promising targets to detect for DM
 - The Galactic Centre is a very complex region in HE/VHE gamma-rays
- Satellite experiments i.e. Fermi-LAT
 - Stacking analyses of dwarf galaxy satellites of the Millky Way provide the strongest constraints up to a few 100 GeV
- Fermi/CTA will be able to probe thermal WIMPs from a few GeV up to a few tens of TeV

 \rightarrow Thermal WIMPs strongly constraints within the next few years

• What next ?

- New TeV models
- Non-thermally produced dark matter models
- PeV dark matter ...